Вклад молодых ученых в развитие сельского хозяйства Алтайского края

Барнаул 2013
Вклад молодых ученых в развитие сельского хозяйства Алтайского края

Сборник научных работ

Барнаул 2013

В сборнике опубликованы результаты научных исследований молодых сотрудников ГНУ Алтайского НИИСХ Россельхозакадемии и других аграрных НИУ.

Материалы могут представлять интерес для широкого круга специалистов сельского хозяйства.
Содержание

Земледелие, агрохимия и защита растений ... 5
Влияние приёмов обработки почвы, способа посева и гербицидов на урожайность кукурузы в степной зоне Западной Сибири
А.В. Кваша, В.И. Дмитриев .. 5
Последействие азотных удобрений, внесенных под пшеницу, на продуктивность овса
В.И. Кравченко ... 11
Влияние глубины основной обработки на влагообеспеченность посевов, величину и качество урожая зерна яровой пшеницы в условиях Алейской степи Алтайского края
А.Н. Кривошеев, Е.Г. Дерянова, А.А. Щербакова .. 14
Приёмы регулирования численности цикадок в агроэкосистеме озимой пшеницы
Л.С. Молодых, Г.Я. Стецов .. 18
Целесообразность комплексного применения агрохимикатов при возделывании озимой пшеницы в Алтайском крае
С.А. Пешков .. 26
Влияние различных приемов обработки почвы на засоренность зернопарового севооборота в Кулундинской степи
Д.В. Пургин .. 30
Особенности развития гороховой зерновки в условиях Алтайского Приобья
Г.Г. Садовников .. 36
Эффективность действия эстерона, КЭ и дианата, ВР на выюнок полевой
Н.Н. Садовникова, Г.Я. Стецов .. 40
Урожайность гороха в зависимости от приемов обработки почвы и средств интенсификации
С.В. Усенко .. 45
Влияние приемов обработки почвы и средств интенсификации на экономическую эффективность возделывания пшеницы
С.В. Усенко, А.В. Куркин ... 49
Накопление биомассы сортов яровой мягкой пшеницы по различным предшественникам и агрохимическим фонам
Д. В. Часовских ... 54
Растениеводство ... 59
Результаты оценки сортообразцов пшеницы яровой мягкой, сохраняемой в сибирском генофонде, по числу зерен колоса в условиях лесостепи Приобья
Н.И. Бойко, В.В. Пискарев .. 59
Адаптивные особенности сортов яровой мягкой пшеницы в условиях Приобской лесостепи Алтайского края
В.С. Валекжанин ... 64
Новые виды и сорта Spiraea L. для озеленения Алтайского края
Е.Н. Ванюшина .. 69
Кукуруза на силос и зерно на севере Казахстана
С.И. Гилевич ... 74
Сравнительная оценка продуктивности сибирских сортов ярового рапса В.П. Данилов, А.А. Штрауб, О.М. Поцелуев ... 80
Влияние гуминового препарата с кальцием на урожайность яровой пшеницы и свойства серой лесной почвы
Т.А. Жирова, А.В. Кравец .. 84
Экологическая пластичность сортообразцов твёрдой пшеницы по массе 1000 зёрен в условиях Приобской лесостепи Алтайского края
А.И. Зиборов ... 89
Повышение производительности труда при ручной уборке урожая жимолости
А.А. Канарский, М.А. Кушинарев ... 93
Исходный материал для селекции мягкой пшеницы степного экотипа в Алтайском крае
Погодные условия и продуктивность подсолнечника
А.М. Мицурина .. 102
Сортоизучение и микоразмножение in vitro хризантемы садовой в Сибири
Г.Э. Пищева, Л.А. Клементьева .. 106
Общая информация ... 111
Публикационная активность молодых ученых при проведении научных исследований
В.Е. Суховерковая ... 111
Влияние приёмов обработки почвы, способа посева и гербицидов на урожайность кукурузы в степной зоне Западной Сибири

А.В. Кваша, мл.н.с, В.И. Дмитриев, д.с.-х.наук
ГНУ Сибирский НИИСХ Россельхозакадемии

Среди культур устойчивых к условиям степной зоны Западной Сибири на первом месте, несомненно, стоит кукуруза. При этом речь, в первую очередь, идёт о раннеспелых и ультранесплелых гибридах, которые при строгом соблюдении технологии возделывания, практически в любой год могут дать не только урожай зелёной массы с початками восковой спелости, но и высококачественное фуражное зерно, обеспечивая тем самым, высокий выход кормовых единиц и переваримого протеина с гектара пашни [4,5].

Особенностью климата степной зоны Западной Сибири является его континентальность, которая выражается в резкой смене суровой, продолжительной зимы - жарким, сравнительно коротким летом и малым годовым количеством атмосферных осадков (300 - 350мм). Продолжительность безморозного периода составляет 120-130 дней. Такие климатические условия предъявляют к гибридам кукурузы особые требования.

Объектом и целью наших исследований являлись раннеспелые гибриды кукурузы, предназначенные для производства высококачественного фуражного зерна, а также отработка элементов технологии их возделывания для получения стабильных урожаев зерна 3,0-5,0 т/га.

Методика исследований

Исследования проводились в 2007-2008 годах на полях ОАО «Агро-фирмы Екатеринославская» Омской области. Почва - среднегумусовый среднемощный легкосуглинистый слабовыщелоченный чернозём, площадь делянки 1,9га, учётная площадь 0,7га. Экологическое испытание гибридов проводилось на двух фонах: 1- без удобрений, 2- с удобрениями (N58P52). В опыте использовались гибриды кукурузы отечественной и иностранной селекции с различными показателями скороспелости по ФАО.
1. Обский -150СВ 150
2. Омка -130 130
3. Омка -150 150
4. Росс -140СВ 140
5. ТК -160 150
6. Росс- 199МВ 190

Срок посева 14 -18 Мая

Отличительной особенностью 2007 года были низкие температуры в начальный период вегетации мае – июне и избыточное увлажнение весной и в летние месяцы. Сумма осадков за май, июнь и июль составила 330, 138 и 185% от нормы соответственно. В 2008 году сумма осадков за летние месяцы была существенно меньше нормы. В мае – 113%, а в июне-8, июле-68 и августе –35% от нормы.

Предшественник - яровая пшеница.

В опытах применялись следующие гербициды: почвенный ТРОФИ - 90 2,5 л/га, по вегетации - баковая смесь МИЛАГРО 0,8 л/га и БАНВЕЛ 0,3 л/га. Посев проводился с шириной междурядий 70 см на глубину 5 см, норма высева 70 тысяч всхожих семян на гектар.

Результаты исследований

Данные исследований показали, что в условиях степной зоны Западной Сибири наиболее скороспелыми являются гибриды Омка – 130 и Омка -150. Период вегетации у которых составил в среднем за два года 107 и 115 дней (табл. 1).

Влажность зерна в период уборки у данных гибридов была 25,3 и 27,7%. Варианты опыта с гибридами ТК-160 и Росс- 199МВ осенью 2007 года, перед уборкой, были забракованы, т.к. зерно в початке имело высокую влажность(64,2 и 43,3%) и не могло быть обмолочено комбайном. Поэтому было принято решение, что дальнейшее их изучение нецелесообразно. У гибридов Росс -140СВ и Обский -150СВ влажность зерна на начало уборки в 2007 году составила 31,2 и 29,8 %. В 2008 году, из-за неблагоприятных погодных условий, влажность зерна у них находилась на уровне 45,3 и 42,6%, т.е. зерно в початке к моменту уборки, находилось в фазе начало восковой спелости, что не позволяло его обмолотить механизированным способом.
Таблица 1
Длина вегетационного периода и урожайность зерна раннеспелых гибридов кукурузы в степной зоне Омской области (в среднем за 2007–2008 гг.)

<table>
<thead>
<tr>
<th>Гибриды</th>
<th>Период вегетации дней</th>
<th>Уборочная влажность зерна, %</th>
<th>Урожайность зерна п/пересчёте на 14% влажность т/га</th>
</tr>
</thead>
<tbody>
<tr>
<td>Омка -130</td>
<td>107</td>
<td>25,3</td>
<td>1,78</td>
</tr>
<tr>
<td>Омка -150</td>
<td>115</td>
<td>27,7</td>
<td>1,85</td>
</tr>
<tr>
<td>Росс -140СВ</td>
<td>126</td>
<td>38,2</td>
<td>1,92</td>
</tr>
<tr>
<td>Обский -150СВ</td>
<td>122</td>
<td>36,2</td>
<td>2,10</td>
</tr>
<tr>
<td>НСР 05</td>
<td>1,2</td>
<td>0,24</td>
<td></td>
</tr>
</tbody>
</table>

По данным ряда учёных [3,4,5,9] для кукурузы необходима хорошо окультуренная почва, которая обеспечивает качественное размещение семян при посеве и получение дружных всходов, а также гарантирует беспрепятственное развитие корневой системы в пахотном и подпахотном слоях. Кроме этого сделан вывод, что в вопросах обработки почвы необходим строго дифференцированный подход применительно к конкретным агроландшафтным зонам с учётом всей специфики местных условий [1,7,8].

В результате проведённых исследований отмечено, что наибольшая урожайность получена по фону безотвальной обработки глубокорыхлителем Джон Дир -512, который обрабатывает почву на глубину 35см, разрыхляет «плужную подошву», тем самым создавая более благоприятные условия для развития корневой системы в пахотном и подпахотном горизонтах. В отличии от плуга, Джон Дир -512 за один проход равномерно обрабатывает весь горизонт, хорошо измельчает и выравнивает поверхность поля. Данный способ обработки почвы позволяет безпрепятственно проникать влаге на большую глубину в осенний период, создавая лучшую влагозарядку и решает проблему избыточного увлажнения почвы в микропонижениях весной. Из полученных результатов исследований следует, что способ обработки почвы оказал существенное влияние на запасы продуктивной влаги, которые составили по вспашке 96 – 113 мм, по глубоко-му рыхлению - 121 – 148 мм (табл. 2).

В данном опыте изучалось также влияние на урожайность способа посева кукурузы. Посев производился с помощью сеялек точного высева СУПН-8, АККОРД – ОПТИМА и зерновой СЗС-2,1. Наиболее высокая урожайность получена при посеве сеялкой точного высева АККОРД – ОПТИМА- 2,05 – 2,38 т/га. Благодаря техническому и технологическому устройству, данная сеялка позволяет высевать строго выверенное количе-
ство семян на заданную глубину, а также вносить точную норму мине­
ральных удобрений, располагая их в оптимальном для корней слое почвы.

Таблица 2
Влияние способов посева и основной обработки почвы на запасы продук­
tивной влаги в метровом слое почвы и урожайность зерна кукурузы (в
среднем за 2007- 2008 гг.)

<table>
<thead>
<tr>
<th>Способ посева</th>
<th>Запасы влаги, мм</th>
<th>Урожайность зерна при 14% влажности, т/га</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>До посева</td>
<td>Перед уборкой</td>
</tr>
<tr>
<td>Безотвальная обработка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>СУПН-8 (контроль)</td>
<td>121</td>
<td>70</td>
</tr>
<tr>
<td>СЗС-2,1</td>
<td>125</td>
<td>77</td>
</tr>
<tr>
<td>АККОРД - ОПТИМА</td>
<td>148</td>
<td>73</td>
</tr>
<tr>
<td>Вспашка</td>
<td></td>
<td></td>
</tr>
<tr>
<td>СУПН-8 (контроль)</td>
<td>113</td>
<td>67</td>
</tr>
<tr>
<td>СЗС-2,1</td>
<td>100</td>
<td>68</td>
</tr>
<tr>
<td>АККОРД - ОПТИМА</td>
<td>96</td>
<td>62</td>
</tr>
</tbody>
</table>

Наряду с факторами, отрицательно влияющими на урожайность, особое
значение имеет засорённость посевов. Потери урожая достигают 50%, если
сорняки не уничтожались в первые 30 дней вегетации [2,9]. А в условиях
Западной Сибири, критический период для кукурузы ещё длиннее — 45-55
dней [6]. При проведении исследований, была поставлена задача: отрабо­
tать технологию защиты посевов с помощью гербицидов без применения
междурядной обработки.

В контроле гербициды не применялись, а проводилась механическая
междурядная обработка культиватором КРН - 5,6. Во втором варианте
проводилась гербицидная обработка по вегетирующим растениям в фазе 3
- 5 листьев. В третьем варианте перед посевом вносили почвенный герби­
cид и обрабатывали гербицидами по вегетации в фазу 3-5 листьев.

В процессе исследований установлено, что применение гербицидов в
комплексе, т.е. внесение почвенного гербицида под предпосевную культи­
вацию и опрыскивание посевов по вегетации в фазе 3-5 листьев баковой
смесью, значительно снизило количество сорняков в начальный (критиче­
sкий) период роста кукурузы (табл.3).
Таблица 3

Засоренность посевов кукурузы и её влияние на период вегетации
(в среднем за 2007-2008 гг.)

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Количество сорняков шт/м²</th>
<th>2 недели после обработки гербицидами</th>
<th>Перед уборкой</th>
<th>Период вегетации, дней</th>
<th>Урожайность т/га</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль (КРН-5,6)</td>
<td>127</td>
<td>96</td>
<td>142</td>
<td>139</td>
<td>0,7</td>
</tr>
<tr>
<td>Гербицид по- по вегетации</td>
<td>147</td>
<td>76</td>
<td>70</td>
<td>130</td>
<td>1,45</td>
</tr>
<tr>
<td>Почвенный гербицидпред посевом + гербицид по повегетации</td>
<td>46</td>
<td>59</td>
<td>60</td>
<td>122</td>
<td>2,17</td>
</tr>
<tr>
<td>НСР 05</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td>0,28</td>
</tr>
</tbody>
</table>

Рассматривая экономику выращивания кукурузы, можно сделать вывод, что комплексное применение химических средств защиты кукурузы, удобрений и современной высокопроизводительной техники ведёт к увеличению затрат на 1га. Однако следует отметить, что при получении высокого урожая (2 т/га и выше), себестоимость 1т зерна снижается в среднем на 30%, прибыль увеличивается в 2,3 раза, а рентабельность производства возрастает с 54 до 92 % (табл. 4).

Таблица 4

Экономические показатели производства зерна кукурузы
(в среднем за 2007–2008 гг.)

<table>
<thead>
<tr>
<th>Варианты</th>
<th>Урожайность при 14% влажности</th>
<th>Затраты на 1 га руб.</th>
<th>Прибыль на 1га руб.</th>
<th>Уровень рентабельности, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>0,7</td>
<td>5624,6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Без почвенного гербицида</td>
<td>1,27</td>
<td>6632,5</td>
<td>2557,7</td>
<td>53,9</td>
</tr>
<tr>
<td>С почвенным гербицидом и по вегетации</td>
<td>1,93</td>
<td>7269,0</td>
<td>6305,5</td>
<td>92,0</td>
</tr>
</tbody>
</table>
Выводы

Таким образом, на основании проведённых исследований можно сделать заключение, что получение высоких, гарантированных урожаев зерна кукурузы в степной зоне Западной Сибири определяется:
1. грамотным выбором гибрида
2. технологией выращивания
3. правильно построенной системой защиты от сорной растительнос.

Из изучаемых гибридов наиболее скороспелыми и гарантированно вызревающими являются Омка-130 и Омка-150 с урожайностью 2т/га и выше. При подготовке почвы, для основной обработки целесообразно применять глубокорыхлитель аналогичный Джон Дир-512, а посев производить при помощи сеялки точного высева аналогичных АККОРД-ОПТИМА. Для условий Западной Сибири актуально также использование почвенного гербицида перед посевом и применение баковых смесей гербицидов при обработках по вегетации.

Библиографический список

7. Милашенко Н.З. Перспективы минимальной обработки // Земледелие. 1977. №1.С.45-47.
Последействие азотных удобрений, внесенных под пшеницу, на продуктивность овса
В.И. Кравченко, к.с.-х.наук
ГНУ Алтайский НИИСХ Россельхозакадемии

Поиск путей увеличения производства зерна был и остаётся, по-прежнему, ключевой проблемой земледелия. Дальнейший рост и стабилизация его сборов должны происходить в основном за счёт повышения продуктивности каждого гектара пашни с учётом агроклиматических ресурсов природной зоны. Особенно актуален этот вопрос в настоящий период при реформировании аграрного комплекса, перевода его на рыночные взаимоотношения. Появилась необходимость перехода от ранее разработанных на новые, более эффективные ресурсосберегающие технологии производства сельскохозяйственной продукции. Решение этих сложных задач возможно лишь на основе освоения современных научно обоснованных систем земледелия и прогрессивных, экономически оправданных технологий, внедрение которых обеспечивает сохранение плодородия почвы.

Опыт возделывания зерновых культур в Кулундинской степи Алтайского края показывает, что в местных почвенно-климатических условиях только по парам можно получить устойчивые и высокие урожаи с хорошими показателями качества зерна. Отсюда вытекает необходимость совершенствования существующих систем земледелия на основе чистого пара. Удельный вес зерновых культур и чистого пара составляют по Алтайскому краю около 74% от общей площади пашни [1].

Кулундинская степь занимает третью часть пашни в Алтайском крае и отличается сухим климатом, подверженностью почв ветровой эрозии. Для земледельцев Кулундинской степи в структуре посевных площадей предпочтение отдавалось севооборотам с короткой ротацией. Сейчас наряду с производством зерна пшеницы уделяется большое внимание производству маслосемян подсолнечника, площадь посевов которого превышает 450 тыс.га. Поэтому, большинство севооборотов в зоне трансформировалось из зернопаровых в зернопаропропашные, где подсолнечник идёт перед паром. Для производства маслосемян подсолнечника предложен пятипольный севооборот: пар чистый — яровая пшеница — яровая пшеница — овёс, подсолнечник. Данный севооборот соответствует требованиям зернопаровой (почвозащитной) системы земледелия, принятой в зоне, высокой продуктивности пашни и возврату подсолнечника в севооборот с короткой ротацией через 7 лет путём замены половины части поля подсолнечника и овса местами через ротацию. Возможны другие сочетания звеньев севооборота.
На Кулундинской СХОС в 2001 г. был заложен многолетний стационарный опыт, в котором были разработаны приемы повышения продуктивности зернопаропропашного севооборота на основе применения гербицидов Нитран в подсолнечнике и Октапон экстра в парном поле. Сочетание этих гербицидов в звене севооборота подсолнечник – чистый пар позволили снизить засоренность в целом по севообороту, а так же уменьшить гербицидную нагрузку на пшеницу, что увеличило окупаемость минеральных удобрений и качество зерна в посевах двух пшениц после пара. Визуально было замечено последействие азотных удобрений внесенных под посев первой и второй пшенице на продуктивность овса, но учеты не проводились. Это послужило основанием для проведения исследований в этой культуре, чтобы дать более полную экономическую оценку в целом по севообороту [2, 3, 4, 5].

Схема и методика закладки опытов

Учеты и наблюдения проводились в пятипольном зернопаропропашном севообороте с чередованием культур пар-пшеница-пшеница-овес-подсолнечник. Опыт заложен методом расщепленных делянок повторность четырехкратная расположение делянок систематическое. Площадь опытных делянок составляла 800 м². Учетная площадь - 250 м². Исследования в опытах проводили по общепринятым методикам (Качинский, 1963; Долгов, 1966; Качергин, 1977; Доспехов, 1985).

Результаты исследований

Урожайность овса в варианте с последействием удобрений была достаточна высока (1,67 т/га) и на 0,17 т/га превышала контроль (табл. 1).

Основные элементы структуры урожая овса сочетались с полученной урожайностью. Сохранность растений овса к уборке была оптимальной. На варианте с последействием азотных удобрений, внесенных в посевах двух предшествующих по севообороту пшениц, коэффициент продуктивной кустистости превышал контроль на 0,2. По массе 1000 зерен повышение составило 3,8 г. Все выше перечисленные показатели непосредственно повлияли на достоверное увеличение урожайности изучаемой культуры.
Таблица 1
Урожайность и структура урожая зерна овса в зависимости от последействия удобрений под посев двух пшениц в звене севооборота пшеница-пшеница-овес, 2011-2012 гг.

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Густота всходов, шт./м²</th>
<th>Густота стояния перед уборкой, шт./м²</th>
<th>Количество продуктивных стеблей перед уборкой, шт./м²</th>
<th>Продуктивная кустистость</th>
<th>Масса 1000 зерен, г</th>
<th>Урожайность, т/га</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>117</td>
<td>115</td>
<td>157</td>
<td>1,3</td>
<td>36,6</td>
<td>1,50</td>
</tr>
<tr>
<td>N₄₀ в посевах двух пшениц</td>
<td>110</td>
<td>109</td>
<td>167</td>
<td>1,5</td>
<td>40,4</td>
<td>1,67</td>
</tr>
<tr>
<td>НСР₀⁵</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4,1</td>
<td>0,13</td>
</tr>
</tbody>
</table>

Для экономической оценки вариантов использовалась разница в прямых затратах и рыночные цены на сельскохозяйственную продукцию 2011 г. (табл. 2).

Таблица 2
Экономическая эффективность возделывания овса в зернопаропропашном севообороте, руб./га

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Затраты</th>
<th>Стоимость продукции</th>
<th>Условно чистый доход</th>
<th>Экономический эффект</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>1165</td>
<td>5700</td>
<td>4535</td>
<td>0</td>
</tr>
<tr>
<td>N₄₀ в посевах двух пшениц</td>
<td>1178</td>
<td>6346</td>
<td>5168</td>
<td>+633</td>
</tr>
</tbody>
</table>

Тарифная ставка взята в размере 160 руб. за одну смену, цена комплексного горючего 22 руб./кг, цена овса – 3800 руб./т. Условно чистый доход варьировал по вариантам опыта от 4535 до 5168 руб./га. На варианте с последействием N₄₀ без затрат под овес получено дополнительно продукции на сумму 633 руб./га.

Выводы
В аридных условиях Западной Кулунды азотные удобрения в звене севооборота пар – пшеница – пшеница при интенсивном подавлении широкого спектра сорняков окупаются. Кроме того, рекомендованная доза их
(\(N_{40}\)), внесенная под пшеницу обеспечила прибавку урожая овса в последствии 0,17 т/га и дала дополнительно продукции в 633 руб./га.

Список литературы

2. Лихачев Н.И., Бендер А.И., Кравченко В.И. Технология подготовки чистого пара после подсолнечника в Западной Кулунде (рекомендации) / Барнаул: «Азбука», 2005.- 20 с.

4. Гнатовский В.М., Лихачев Н.И., Назаренко П.Н., Кирилов С.С., Кравченко В.И., Мицурина А.М., Пургин Д.В. Технологические приемы выращивания подсолнечника в острозасушливых условиях Алтайского края // Достижения науки и техники АПК. – 2008. № 11. – С. 18 – 21

УДК 631.51:631.559:633.11(571.15)

Влияние глубины основной обработки на влагообеспеченность посевов, величину и качество урожая зерна яровой пшеницы в условиях Алейской степи Алтайского края

А.Н. Кривошеев, м.н.с., Е.Г. Дерянова, к. с.-х.н.,
А.А. Щербакова, н.с.

ГНУ Алтайский НИИСХ Россельхозакадемии

Алейская степь, располагаясь на юго-западе Алтайского края, в природном и экономическом отношении имеет особый характер. Получая большое количество тепла в сочетании с черноземными почвами, она позволяет выращивать здесь достаточно широкий спектр сельскохозяйственных культур, доминирующей из которых конечно же является яровая пшеница. Однако, из-за недостаточного увлажнения, эта зона не может реализовывать в полной мере свой зерновой потенциал. Ситуация усугубляется...
еще и тем, что в последнее время все чаще имеет место проявления засух, которые создают катастрофические условия для производства зерна.

Недостаток продуктивной влаги — основной фактор, ограничивающий урожайность сельскохозяйственных культур. Её запасы в почве обусловлены природными осадками и слабо поддаются регулированию. Далеко не всегда срабатывает и комплекс применяемых агротехнических, влагосберегающих мероприятий при возделывании зерновых культур, направленных на накопление и сохранение влаги в почве. На современном этапе развития сельскохозяйственного производства основным направлением является ресурсосбережение и экологизация земледелия, заключающееся в уменьшении глубины основной обработки почвы и даже отказе от нее.

В заложенном нами полевом эксперименте оценивалось влияние предшественников и различных вариантов основной обработки почвы на запасы продуктивной влаги в почве и урожайность яровой пшеницы в условиях КФХ «Золотая осень» Алтайского района Алтайского края. Основная обработка почвы в опыте включала три варианта: мелкая (14-16 см), поверхностная (8-10 см) и нулевая (без обработки). Вегетационный период 2012 г. в Алейской степи, как и в целом по краю, характеризовался значительным недобором осадков на фоне повышенных температур: гидротермический коэффициент за май-июнь составил 0,25, за май-август — 0,27.

Проведенные наблюдения за влагозапасами в почве перед уходом в зиму показали, что содержание в метровом слое почвы продуктивной влаги составило 40,9 — 60,9 мм (табл. 1).

За зимний период 2011-2012 гг. выпало 88 мм осадков или 60% от среднемноголетней нормы. В ходе наблюдений за отложением снега было установлено, что высота снежного покрова в зависимости от вариантов опыта колебалась в пределах 14-20 см, а плотность снега — 0,20-0,26 г/см³. Вследствие этого, как влагозапасы в снеге, так и коэффициент снегоотложения, в зависимости от изучаемых вариантов изменялись незначительно: от 28,9 до 37,2 мм и 0,34 — 0,44 соответственно. Запасы продуктивной влаги в метровом слое в почве после схода снега характеризовались как плохие [1], составив в паровом поле в среднем по обработкам 82,8 мм, по гороху — 70,0 мм. Увеличение глубины основной обработки почвы в условиях малоснежной морозной зимы в большинстве случаев приводило к значительному увеличению запасов продуктивной влаги в почве: с 65,9 до 75,6 мм по гороху, и с 83,4 до 86,5 мм в паровом поле. При этом максимальное пополнение почвенных влагозапасов за счет зимних осадков, как и коэффициент их использования, наблюдались на вариантах с более глубокой основной обработкой — в среднем на 28,9 мм и 0,8, тогда как при нулевой обработке эти показатели составили 23,6 мм и 0,7, при поверхностной — 24,0 и 0,7.
Таблица 1

Усвоение почвой осенне-зимних осадков в зависимости от предшественников и основной обработки почвы и расход влаги на формирование урожая яровой пшеницы

<table>
<thead>
<tr>
<th>Культура</th>
<th>Обработка</th>
<th>Запасы влаги перед уходом в зиму мм*</th>
<th>Влагозапасы в снеге, мм</th>
<th>Коэффициент снеготаяния</th>
<th>Запасы влаги после схода снега, мм*</th>
<th>Пополнение, мм*</th>
<th>К использованию зимних осадков</th>
<th>Запасы влаги в фазу всходов, мм*</th>
<th>Потери влаги, мм*</th>
<th>К водопотребления, мм/ц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Без обработки</td>
<td>59,3</td>
<td>36,4</td>
<td>0,43</td>
<td>83,4</td>
<td>24,1</td>
<td>0,7</td>
<td>59,4</td>
<td>57,0</td>
<td>11,8</td>
</tr>
<tr>
<td></td>
<td>Поверхностная</td>
<td>58,0</td>
<td>28,9</td>
<td>0,34</td>
<td>78,4</td>
<td>20,4</td>
<td>0,7</td>
<td>58,2</td>
<td>53,2</td>
<td>10,2</td>
</tr>
<tr>
<td></td>
<td>Мелкая плоскорезная</td>
<td>60,9</td>
<td>35,4</td>
<td>0,42</td>
<td>86,5</td>
<td>25,6</td>
<td>0,7</td>
<td>50,7</td>
<td>68,8</td>
<td>7,8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Среднее</td>
<td>59,4</td>
<td>33,6</td>
<td>82,8</td>
<td>23,4</td>
<td>0,7</td>
<td>56,1</td>
<td>59,6</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>Без обработки</td>
<td>42,9</td>
<td>33,9</td>
<td>0,40</td>
<td>65,9</td>
<td>23,0</td>
<td>0,7</td>
<td>49,9</td>
<td>49,1</td>
<td>8,1</td>
</tr>
<tr>
<td></td>
<td>Поверхностная</td>
<td>40,9</td>
<td>37,2</td>
<td>0,44</td>
<td>68,6</td>
<td>27,7</td>
<td>0,7</td>
<td>50,0</td>
<td>51,6</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>Мелкая плоскорезная</td>
<td>43,3</td>
<td>35,9</td>
<td>0,43</td>
<td>75,6</td>
<td>32,3</td>
<td>0,9</td>
<td>59,7</td>
<td>48,9</td>
<td>8,3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Среднее</td>
<td>42,4</td>
<td>35,7</td>
<td>70,0</td>
<td>27,7</td>
<td>0,8</td>
<td>53,2</td>
<td>49,8</td>
<td>8,5</td>
</tr>
<tr>
<td></td>
<td>Без обработки</td>
<td>51,1</td>
<td>35,2</td>
<td>0,42</td>
<td>74,7</td>
<td>23,6</td>
<td>0,7</td>
<td>54,6</td>
<td>53,0</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>Поверхностная</td>
<td>49,5</td>
<td>33,0</td>
<td>0,39</td>
<td>73,5</td>
<td>24,0</td>
<td>0,7</td>
<td>54,1</td>
<td>52,4</td>
<td>9,6</td>
</tr>
<tr>
<td></td>
<td>Мелкая плоскорезная</td>
<td>52,1</td>
<td>35,7</td>
<td>0,42</td>
<td>81,1</td>
<td>28,9</td>
<td>0,8</td>
<td>55,2</td>
<td>58,8</td>
<td>8,1</td>
</tr>
</tbody>
</table>

* - в слое почвы 0-100 см

Таким образом, эффективность усвоения почвой зимних осадков была максимальной при мелкой плоскорезной обработке почвы (55%) и примерно одинаковой при нулевой и поверхностной — (46 и 48%). Весенний период выдался засушливым: за апрель выпало всего 6 мм осадков при среднемноголетнем значении 27 мм, что на фоне повышенных температур оказало отрицательное влияние на сохранение влагозапасов в почве. Так, потери продуктивной влаги в метровом слое почвы при посеве пшеницы по пару составили 53,2–68,8 мм, по гороху — 48,9–51,6 мм (табл. 1). При этом максимальные потери влаги отмечены при мелкой плоскорезной обработке — в среднем по предшественникам — 58,8 мм. В результате этого преимущество по накоплению продуктивной влаги в метровом слое почвы, как предшественников, так и глубины обработки почвы, нивелировалось. В фазу полных всходов запасы продуктивной влаги по пару состав-
ляли 56,1 с колебаниями от 50,7 до 59,4 мм, а по гороху — 53,2 мм с колебаниями от 49,9 до 59,7 мм в зависимости от обработки почвы.

Рост и развитие культуры протекали в критических условиях: за вегетационный период выпало 48 мм осадков или 40% от среднемноголетней нормы, ГТК за июнь составил 0,31, июль — 0,37, август — 0,18. Посевы характеризовались изреженным стеблестоем, отсутствием кустистости; пшеница формировала низкорослые растения, мелкий колос с щуплым зерном. К уборке культуры запасы продуктивной влаги в почве по вариантам опыта снижались до 4,0-8,4 мм. Общий расход влаги на формирование урожая составил 82,9-90,0 мм при посеве пшеницы по пару и 75,1-88,3 мм — при её посеве по гороху. Все это не могло не сказаться на продуктивности культуры и качественных характеристиках урожая (табл.2).

Урожайность изменялась в первом случае в пределах 7,0-10,8 ц/га, во втором — 8,7-10,6 ц/га, коэффициент водопотребления — соответственно 7,8-11,8 и 8,1-9,0 мм/ц. В условиях значительного дефицита осадков, как зимнего, так и вегетационного периодов, повышенного фона температур во время роста и развития растений, достоверного влияния изучаемых предшественников на урожайность яровой пшеницы не обнаружено.

Таблица 2
Урожайность и качество зерна яровой пшеницы по вариантам опыта

<table>
<thead>
<tr>
<th>Предшественник</th>
<th>Обработка</th>
<th>Урожайность, ц/га*</th>
<th>Масса 1000 зерен, г</th>
<th>Натура зерна, г/л</th>
<th>Стекловидность, %</th>
<th>Содержание белка в зерне, %</th>
<th>Содержание клейковины в зерне, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пар</td>
<td>Без обработки</td>
<td>7,0</td>
<td>30,8</td>
<td>741</td>
<td>56,0</td>
<td>15,6</td>
<td>36,6</td>
</tr>
<tr>
<td></td>
<td>Поверхностная</td>
<td>8,8</td>
<td>28,9</td>
<td>738</td>
<td>57,0</td>
<td>15,5</td>
<td>36,7</td>
</tr>
<tr>
<td></td>
<td>Мелкая плоскорезная</td>
<td>10,8</td>
<td>30,9</td>
<td>746</td>
<td>57,0</td>
<td>14,8</td>
<td>35,3</td>
</tr>
<tr>
<td></td>
<td>Среднее</td>
<td>8,9</td>
<td>30,2</td>
<td>742</td>
<td>56,7</td>
<td>15,3</td>
<td>36,2</td>
</tr>
<tr>
<td>Горох</td>
<td>Без обработки</td>
<td>9,3</td>
<td>28,9</td>
<td>741</td>
<td>56,0</td>
<td>15,2</td>
<td>36,1</td>
</tr>
<tr>
<td></td>
<td>Поверхностная</td>
<td>8,7</td>
<td>28,3</td>
<td>747</td>
<td>60,0</td>
<td>15,1</td>
<td>36,1</td>
</tr>
<tr>
<td></td>
<td>Мелкая плоскорезная</td>
<td>10,6</td>
<td>30,3</td>
<td>740</td>
<td>57,0</td>
<td>14,7</td>
<td>35,2</td>
</tr>
<tr>
<td></td>
<td>Среднее</td>
<td>9,5</td>
<td>29,2</td>
<td>743</td>
<td>57,7</td>
<td>15,0</td>
<td>35,8</td>
</tr>
<tr>
<td>Среднее по обработкам</td>
<td>Без обработки</td>
<td>8,1</td>
<td>29,9</td>
<td>741</td>
<td>56,0</td>
<td>15,4</td>
<td>36,4</td>
</tr>
<tr>
<td></td>
<td>Поверхностная</td>
<td>8,8</td>
<td>28,6</td>
<td>743</td>
<td>58,5</td>
<td>15,3</td>
<td>36,4</td>
</tr>
<tr>
<td></td>
<td>Мелкая плоскорезная</td>
<td>10,7</td>
<td>30,6</td>
<td>743</td>
<td>57,0</td>
<td>14,8</td>
<td>35,2</td>
</tr>
</tbody>
</table>
* - НСР05 по фактору A 2,1, B 2,6 AB 2,9
Независимо от предшественника, максимальная продуктивность культуры получена на фоне мелкой плоскорезной обработки почвы. Так, за счет формирования более крупного зерна (это видно из таблице по массе 1000 зерен), при размещении пшеницы по пару сформирована урожайность на уровне 10,8 ц/га, при посеве по гороху – 10,6 ц/га, что выше, чем по фону поверхностной обработки на 2,0 и 1,9 ц/га, а в сравнении с необработанным с осени фоном – на 3,8 ц/га и 1,3 ц/га соответственно. Зерно яровой пшеницы, полученное в 2012 году по указанным в таблице предшественникам, практически не различалось по качеству. Однако можно отметить, что как при посеве по пару, так и по гороху, с уменьшением глубины обработки формировалось более мелкое зерно с более высоким содержанием белка и клейковины. Так, на варианте без осенней обработки почвы содержание белка составило 15,2-15,6%, клейковины – 36,1-36,6% по гороху и пару соответственно, в то время как при проведении мелкой плоскорезной обработки почвы – 14,7-14,8% и 35,2-35,3%. Однако и в том и другом случае клейковина относилась ко II группе качества.

Таким образом, в условиях критического по увлажнению 2012 года, мелкая поверхностная обработка почвы способствовала лучшему использованию влаги на формирование урожая и обеспечивала увеличение продуктивности яровой пшеницы на 14-54%, снижая при этом содержание белка на 0,5-0,8, а клейковины – на 0,9-1,3 абсолютных процента. Достоверного влияния изучаемых предшественников на урожайность и качество яровой пшеницы в условиях 2012 года не обнаружено.

Список литературы

УДК 632.753:633.11

Приёмы регулирования численности цикадок в агроэкосистеме озимой пшеницы

Л.С. Молодых, аспирант, Г.Я. Стецов, д. с.-х. н.
ГНУ Алтайский НИИСХ Россельхозакадемии

С появлением новых сортов площадь посева озимой пшеницы в Алтайском крае расширяется. В последние годы на этой культуре усилилась вредоносность злаковых цикадок, среди которых преобладают шеститочечная, полосатая и тёмная [3, 4]. В первую очередь цикадки опасны как
переносчики вирусов закукиливания овса и мозаики озимой пшеницы [1]. Прямые способы уничтожения вирусов отсутствуют. Поэтому важное место занимает разрыв инфекционной цепи «растение – переносчик – вирус».

Заселение озимой пшеницы цикадками и заражение вирусами зависит от срока посева. Чем позднее посеяны озимые, тем меньше степень распространения вирусов. В то же время при излишне позднем посеве озимые не успеют раскуститься.

Посевы озимых можно защитить от цикадок химическим методом. Для этого можно применить инсектицидные протравители семян или обработать инсектицидами вегетирующие посевы. Следует учитывать, что длительность действия и инсектицидных протравителей, и листовых инсектицидов ограничена. Поэтому при слишком длительном периоде от посева до ухода в зиму какой-то период растения будут не защищены. Поэтому перед нами стояла задача разработать такую технологию защиты озимой пшеницы, чтобы она успела раскуститься и в то же время ушла в зиму максимально свободной от вирусной инфекции.

Обычный срок начала посева озимой пшеницы в Приобской зоне Алтайского края – конец августа. Мы изучали 5 сроков посева культуры, с интервалом в 5 дней, начиная с 25 августа. На этих сроках закладывали варианты обработки семян инсектицидным протравителем, обрабатывали инсектицидом вегетирующие растения и применяли их сочетание (схема в табл. 2).

Методика исследования

Опыт был заложен в 2011 году на опытном поле ГНУ Алтайского НИИСХ. Предшественник озимой пшеницы - чистый пар, сорт Жатва Алтая. Общая площадь делянки составила 50 м² (25м*2м), субделянки – 25 м². Использовали метод расщеплённых делянок, способ размещения вариантов систематический, повторность 4-х кратная. В опыте использовали общепринятые методики исследований.

Результаты исследования

Для установления сроков появления и развития цикад, их миграции проводили наблюдения и учеты на протяжении вегетации культуры ящи- ком Петлюка. На основании наблюдений составлен фенологический календарь развития популяций шеститочечной и полосатой цикадок, их цикл развития совпадают (табл. 1). До посева озимой пшеницы на различных стациях наблюдалась высокая численность имаго цикадок, в том числе на паровом поле. В дальнейшем они мигрировали на посевы, яйцекладка началась в первой декаде сентября.

В 2011 году определяли динамику численности цикадок на посевах озимой пшеницы (рис. 1). Заселение культуры началось в фазу неполных всходов. Более ранние посевы 25 и 30 августа были заселены цикад-
ками сильнее, их максимальная численность достигала 80 и 73 экз./м² соответственно. При первом сроке посева до ухода в зиму цикадки находились на озимой пшенице 55 дней, при последнем — 28. Следовательно, чем раньше был произведен посев, тем длительнее вредитель питался и был выше риск массовой передачи вирусов.

Рис. 1 Динамика численности цикадок на контроле без средств защиты в зависимости от срока посева озимой пшеницы, 2011 г.

При применении на озимой пшенице инсектицидного протравителя семян Табу, ВСК численность цикадок снижалась. На посевах 25 и 30 августа, в сравнении с последующими сроками, количество вредителей было наибольшим (рис. 2).

Рис. 2 Влияние протравителя семян Табу, ВСК - 0,5 л/т на численность цикадок в зависимости от срока посева озимой пшеницы, 2011 г.
Фенологический календарь развития популяций шеститочечной и полосатой цикадок на посевах озимой пшеницы, 2011-2012 гг.

<table>
<thead>
<tr>
<th>Год</th>
<th>Месяц</th>
<th>Декада</th>
<th>КоличествоГенераций</th>
<th>Зимующая фаза</th>
<th>Период вредоносности</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Август</td>
<td></td>
<td>1</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Сентябрь</td>
<td></td>
<td>1</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Октябрь</td>
<td></td>
<td>1</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>2012 г.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Условные обозначения: + имаго; о яйцо; - личинка
При сравнении рисунков 1 и 2 видно, что при применении Табу, ВСК максимальная численность цикадок в первые два срока посева была ниже, чем на контроле на 27 и 35 экз./м² соответственно. При посеве 5, 10 и 15 сентября максимальное количество вредителей снижалось до 21, 19 и 11 экз./м² соответственно. Системное действие протравителя Табу, ВСК, обеспечило защиту первых сроков посева озимой пшеницы против цикадок в самые уязвимые фазы: прорастание и всходы.

На вариантах с применением инсектицида Фьюри, ВЭ, 0,1 л/га по вегетирующим растениям озимой пшеницы численность цикадок была ниже относительно контроля (рис. 3). До опрыскивания посевов количество цикадок было наибольшим на первом, втором и третьем сроках посева и достигало 72, 66 и 50 экз./м² соответственно, тогда как на четвёртом и пятом - 24 и 17. После опрыскивания озимой пшеницы численность вредителей оказалась ниже, чем на контроле при посеве 25 августа, 30 августа и 5 сентября на 42, 20 и 25 экз./м² соответственно. На варианте, посеянном 10 сентября, число цикадок после опрыскивания Фьюри, ВЭ, было выше, чем на контроле и составило 16 экз./м².

Рис. 3 Влияние обработки вегетирующих растений инсектицидом Фьюри, ВЭ - 0,1 л/га на численность цикадок в зависимости от срока посева озимой пшеницы, 2011 г.

При комплексном применении протравливания семян перед посевом Табу, ВСК, 0,5 л/т и опрыскивания вегетирующих растений озимой пшеницы Фьюри, ВЭ, 0,1 л/га численность вредителей в сравнении с контролем оказалась ниже на всех сроках посева на 60, 40, 43, 7 и 5 экземпляров соответственно (рис. 4). Комплексное применение инсектицидов позволило максимально защитить посевы от цикадок и снизить их вред, начиная от фазы прорастания до начала кущения.

Таблица 2

Степень поражения растений озимой пшеницы вирусами (%) в фазу выхода в трубку, 2012 г.

<table>
<thead>
<tr>
<th>Дата посева</th>
<th>1. Контроль (без инсектицидов)</th>
<th>2. Табу, ВСК, 0,5 л/т</th>
<th>3. Фьюри, ВЭ, 0,1 л/га</th>
<th>4. Табу, 0,5 л/т + Фьюри, 0,1 л/га</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.08.</td>
<td>58,8</td>
<td>45,7</td>
<td>57,5</td>
<td>40,7</td>
</tr>
<tr>
<td>30.08.</td>
<td>28,5</td>
<td>25,6</td>
<td>43,0</td>
<td>25,0</td>
</tr>
<tr>
<td>5.09.</td>
<td>19,6</td>
<td>5,8</td>
<td>29,5</td>
<td>11,5</td>
</tr>
<tr>
<td>10.09.</td>
<td>14,2</td>
<td>8,7</td>
<td>13,0</td>
<td>14,1</td>
</tr>
<tr>
<td>15.09.</td>
<td>3,8</td>
<td>7,3</td>
<td>8,9</td>
<td>7,5</td>
</tr>
</tbody>
</table>

На контроле, чем позднее была посеяна озимая пшеница, тем была ниже доля зараженных растений. На вариантах с инсектицидами на ранних (первом и втором) сроках посева процент зараженных растений незначительно меньше или даже больше контроля. Численность цикадок осенью на пшенице, посеянной в эти сроки, была настолько массовая, что применение средств защиты не позволяло снизить активную передачу вирусов растениям озимой пшеницы и заражение невирофорных особей. Чем позднее срок посева озимой, тем меньше риск цепной передачи инфекции.

Нами проведен анализ элементов структуры урожая озимой пшеницы и установлено, что вредоносность цикадок оказала значительное влияние на их формирование (табл. 3).
Больные растения отстали в росте, их высота варьировала в зависимости от срока посева от 33 до 38 см, что в 1,5 раза было меньше высоты здоровых. Наблюдали увеличение массы 1000 зерен больных растений с каждым последующим сроком посева от 15,6 до 19,6 г. Количество зерен в колосе у больных растений снижалось на 2-6 шт., их было в 4-10 раз меньше, чем у здоровых.

Таблица 3

Влияние срока посева и защитных мероприятий на элементы структуры урожая озимой пшеницы, 2012 г.

<table>
<thead>
<tr>
<th>Дата посева</th>
<th>Вариант</th>
<th>Высота растений, см</th>
<th>Масса 1000 зерен, г</th>
<th>Число зерен в колосе, шт.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>здоровые больные здоровые больные здоровые больные</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.08.</td>
<td>Контроль (без инсектицидов)</td>
<td>54 33</td>
<td>24,7 15,6</td>
<td>23 6</td>
</tr>
<tr>
<td></td>
<td>Табу, ВСК, 0,5 л/т</td>
<td>59 34</td>
<td>26,7 18,1</td>
<td>23 4</td>
</tr>
<tr>
<td></td>
<td>Фьюри, ВЭ, 0,1 л/га</td>
<td>51 33</td>
<td>22,0 16,1</td>
<td>24 6</td>
</tr>
<tr>
<td></td>
<td>Табу, 0,5 л/т + Фьюри, 0,1 л/га</td>
<td>58 33</td>
<td>26,2 17,8</td>
<td>22 4</td>
</tr>
<tr>
<td>30.08.</td>
<td>Контроль (без инсектицидов)</td>
<td>56 34</td>
<td>24,6 16,9</td>
<td>23 6</td>
</tr>
<tr>
<td></td>
<td>Табу, ВСК, 0,5 л/т</td>
<td>58 35</td>
<td>25,7 18,9</td>
<td>20 5</td>
</tr>
<tr>
<td></td>
<td>Фьюри, ВЭ, 0,1 л/га</td>
<td>55 36</td>
<td>23,1 16,4</td>
<td>23 6</td>
</tr>
<tr>
<td></td>
<td>Табу, 0,5 л/т + Фьюри, 0,1 л/га</td>
<td>58 35</td>
<td>24,0 19,6</td>
<td>23 6</td>
</tr>
<tr>
<td>5.09.</td>
<td>Контроль (без инсектицидов)</td>
<td>56 34</td>
<td>23,9 17,9</td>
<td>22 5</td>
</tr>
<tr>
<td></td>
<td>Табу, ВСК, 0,5 л/т</td>
<td>61 36</td>
<td>25,1 20,1</td>
<td>21 4</td>
</tr>
<tr>
<td></td>
<td>Фьюри, ВЭ, 0,1 л/га</td>
<td>52 32</td>
<td>22,7 17,9</td>
<td>20 5</td>
</tr>
<tr>
<td></td>
<td>Табу, 0,5 л/т + Фьюри, 0,1 л/га</td>
<td>58 34</td>
<td>23,3 20,7</td>
<td>20 2</td>
</tr>
<tr>
<td>10.09.</td>
<td>Контроль (без инсектицидов)</td>
<td>54 36</td>
<td>23,9 18,4</td>
<td>19 5</td>
</tr>
<tr>
<td></td>
<td>Табу, ВСК, 0,5 л/т</td>
<td>56 33</td>
<td>23,0 17,8</td>
<td>20 4</td>
</tr>
<tr>
<td></td>
<td>Фьюри, ВЭ, 0,1 л/га</td>
<td>54 33</td>
<td>22,6 19,2</td>
<td>19 5</td>
</tr>
<tr>
<td></td>
<td>Табу, 0,5 л/т + Фьюри, 0,1 л/га</td>
<td>57 34</td>
<td>21,3 17,2</td>
<td>21 3</td>
</tr>
<tr>
<td>15.09.</td>
<td>Контроль (без инсектицидов)</td>
<td>58 38</td>
<td>22,8 19,6</td>
<td>20 5</td>
</tr>
<tr>
<td></td>
<td>Табу, ВСК, 0,5 л/т</td>
<td>57 36</td>
<td>22,4 17,6</td>
<td>21 4</td>
</tr>
<tr>
<td></td>
<td>Фьюри, ВЭ, 0,1 л/га</td>
<td>55 33</td>
<td>22,5 14,9</td>
<td>18 3</td>
</tr>
<tr>
<td></td>
<td>Табу, 0,5 л/т + Фьюри, 0,1 л/га</td>
<td>57 37</td>
<td>22,1 19,6</td>
<td>22 6</td>
</tr>
</tbody>
</table>

В исключительно неблагоприятных погодных условиях 2012 года озимая пшеница сформировала низкую урожайность независимо от срока посева (табл. 4). При применении химических средств защиты достоверная прибавка урожая в сравнении с контролем была получена на вариантах с
применением инсектицидного протравителя семян Табу, ВСК, и его комплексном использовании с инсектицидом для обработки вегетирующих растений Фьюри, ВЭ.

Таблица 4

Влияние срока посева и применения средств защиты растений на урожайность озимой пшеницы Жатва Алтая, т/га, 2012 г.

<table>
<thead>
<tr>
<th>Фактор В – применение инсектицидов</th>
<th>Фактор А – дата посева</th>
<th>Среднее для фактора В</th>
<th>НСР05 = 0,10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Контроль</td>
<td>25.08</td>
<td>1,12</td>
<td>0,99</td>
</tr>
<tr>
<td>2. Табу, ВСК, 0,5 л/т</td>
<td>30.08</td>
<td>1,14</td>
<td>1,24</td>
</tr>
<tr>
<td>3. Фьюри, ВЭ, 0,1 л/га</td>
<td>5.09</td>
<td>1,08</td>
<td>0,95</td>
</tr>
<tr>
<td>4. Табу, 0,5 л/т + Фьюри, 0,1 л/га</td>
<td>10.09</td>
<td>1,09</td>
<td>1,23</td>
</tr>
<tr>
<td>Среднее для фактора А НСР05 = 0,12</td>
<td>15.09</td>
<td>1,15</td>
<td>1,28</td>
</tr>
</tbody>
</table>

Заключение

Уже в фазу всходов посевы озимой пшеницы интенсивно заселялись цикадками. Максимальная численность вредителей наблюдалась при посеве 25 и 30 августа. Без применения средств защиты, чем позже сеяли озимую пшеницу, тем позднее был срок заселения и ниже вредоносность цикадок. Применение химических средств позволило сократить численность цикадок, при этом наибольшее снижение числа вредителей обеспечило комплексное применение протравителя семян Табу, ВСК, и инсектицида по вегетации Фьюри, ВЭ. Тем не менее, предпринятые мероприятия не полностью обеспечили защиту в результате массового числа вредителей и их активной передачи вирусов растениям озимой пшеницы. Максимальное количество растений, поражённых вирусными болезнями, наблюдалось на ранних сроках сева. Больные растения отстали в росте и сформировали низкую массу 1000 зёрн. Урожайность культуры в 2012 году была получена невысокая, достоверная прибавка получена только на вариантах с применением инсектицидного протравителя и его комплексном использовании с инсектицидом для обработки вегетирующих растений.

Список литературы

Целесообразность комплексного применения агрохимикатов при возделывании озимой пшеницы в Алтайском крае

С.А. Пешков, аспирант
ГНУ Алтайский НИИСХ Россельхозакадемии

Озимая пшеница является одной из самых распространенных важнейших продовольственных культур. С появлением сортов сибирской селекции озимую пшеницу начали возделывать на Алтае. Основные посевы сосредоточены в Бийском, Зональном, Алтайском, Целинном, Смоленском, Троицком, Косихинском, Первомайском, Быстроистокском районах, где её высевают по парам, на участках с хорошим снежным покровом. По данным Управления сельского хозяйства в 2012 году площадь посева озимых культур в Алтайском крае составляла 74,1 тыс. га, из них 39,3 тыс. га озимой пшеницы.

Одним из наиболее эффективных средств повышения урожая и уровня качества зерна озимой пшеницы являются минеральные удобрения. Правильное применение удобрений в комплексе с другими агроприемами способствует получению высоких и устойчивых урожаев озимой пшеницы [1]. Эта культура требовательна к плодородию почвы. С урожаем 2,5 т зерна и эквивалентным количеством соломы озимая пшеница выносит N — 95 кг, P₂O₅ — 35 кг, K₂O₅ -60 кг, она отзывчива на внесение минеральных удобрений [2].

При недостатке в почве азота растения хуже развиваются, ослабевает процесс кущения, листья желтеют, затем краснеют и отмирают, уменьшается число продуктивных стеблей, размер колоса и количество в нем колосков и цветков.

Потребление азота растениями озимой пшеницы начинается с первых дней жизни и продолжается до окончания налива зерна. Так, в фазе кущения потребление азота составляет 20%, в период выхода в трубку — колошения — 50-55%, цветения — начала восковой спелости — 5-10% от общего количества потреблённого азота. Недостаток азота в отдельные фазы нель-
зя компенсировать внесением его в последующие фазы. Наибольшая потребность в нем ощущается от начала выхода в трубку до колошения. Максимальное содержание азота в растениях приходится на период от всходов до весеннего кущения. В связи с этим, важна подкормка азотными удобрениями в ранневесенний период для формирования высоких урожаев и в период колошения для получения зерна с высоким содержанием белка и клейковины [3].

Озимая пшеница в начале роста развивается за счет эндосперма семени, с появлением двух-трех листьев ей необходимо усиленное фосфорное питание. Хорошо обеспеченные фосфором на ранних этапах жизни растения быстрее развиваются корневую систему, генеративные органы, ускоряют созревание. При недостатке фосфора ослабевает общий рост растений и задерживается цветение и созревание, ухудшается использование азота, задерживается синтез белков, замедляется рост растений, что приводит к снижению урожая. Внесение фосфора уменьшает зависимость урожая от неблагоприятных погодных условий, прежде всего, от недостатка влаги [4].

Левченко (1981) считает, что фосфор способствует активизации физиологических процессов в корнях, воздействует на активность нитратредуктазы и дыхание. Интенсивное поглощение фосфора озимыми культурами на осень приводит к повышению в растительной ткани уровня макроэргических соединений, участвующих в процессе закаливания (Остапова, 1986; Кравец, 1999). Понижение температуры корнеобитаемого слоя ухудшает поступление в растение фосфора, влияя на накопление сухой массы, замедляет включение фосфора в фосфорорганические соединения. Плохая обеспеченность растений фосфором в экстремальных условиях является причиной торможения всех других физиологических процессов, в частности, аминирования и переаминирования [8].

Po мнению Штаусберга (1969), затруднения в использовании растениями минерального азота для синтеза белков при температуре 3 - 6 °С обусловлено недостатком фосфора. Автор делает вывод, что при пониженных температурах (10 - 12 °С) растения в первую очередь страдают от недостатка фосфора, а не от недостатка азота.

Калий способствует синтезу белков. Он участвует в образовании углеводов, хлорофилла, каротина и других веществ, повышает зимостойкость растений и устойчивость к полеганию, уменьшает поражение растений корневой гнилью и ржавчиной. При его недостатке рост растений идет хуже, снижается кустистость, листва приобретает синевато-зеленую окраску с бронзовым оттенком, края их буреют и закручиваются. Поступление калия в растение начинается с фазы всходов и продолжается до цветения. Максимальное содержание его в растениях озимой пшеницы приходится на начальные фазы, к фазе полной спелости количество калия снижается до 0,8-1%. В исследованиях Семененко (1997) в условиях низ-
кой теплообеспеченности возрастала роль калийных удобрений. Они отмечает благоприятное действие калийных удобрений на продуктивность растений в пасмурные и холодные годы.

Таким образом, оптимальное обеспечение элементами питания способствует лучшей перезимовке пшеницы. Так, в крайне неблагоприятных условиях 1969 года на не удобренных полях Донского ЗНИИСХ погибло 50% растений, а при внесении полного удобрения – только 34%. Урожай равнялся соответственно 19,7 и 26,0 ц/га. В 1972 году погодные условия были не менее суровыми. На удобренных полях сохранилось 58, а на неудобренных - 32% растений.

Немаловажное значение при возделывании озимой пшеницы имеет борьба с сорной растительностью.

По данным ФАО ООН, в странах мира потери урожая зерна пшеницы от сорняков ежегодно составляют 9,8% или 27,8 млн.т. Борьбу с ними ведут агroteхнически и применением гербицидов. Традиционно обработку посевов пшеницы гербицидами проводят весной в период от полного кущения до выхода в трубку.

В европейской части нечерноземной зоны отделом герболногии ВНИИФ проведены исследования по борьбе с зимующими видами сорняков в посевах озимой пшеницы осенним применением гербицидов [10].

Аналогичная проблема существует и в Алтайском крае. Здесь в посевах озимых культур развиваются многочисленные виды малолетних озимых, зимующих и двулетних сорняков.

Среди двудольных однолетних зимующих наиболее распространены аистник цикутный, гулявник Лёзеля, дескурайния Софии, пастушья сумка, ромашка непахучая, хориспора сибирская, ярутка полевая.

Двудольные однолетние озимые в основном представлены: василек синий, рыжик мелкоплодный, скерда кровельная.

Менее опасны, но иногда встречаются двудольные двулетние, донник белый и желтый, икотник серо-зеленый, капуста полевая, ли-пучка обыкновенная, смолевка, сурепка обыкновенная

Весной из-за перегруженности полевыми работами, неблагоприятными погодными условиями (сильный ветер, переувлажнение почвы) опрыскивание гербицидами часто задерживается, в результате сорняки перерастают чувствительную фазу и «уходят» устойчивая фаза озимых.

Осенью за счет устойчивого состояния атмосферы, низкой температуры воздуха и его высокой относительной влажности в 4-6 раз уменьшается испарения и снос мелких капель, повышается степень оседания рабочего раствора на обрабатываемой площади. При этом низкие температуры не снижают эффективность препаратов.

В исследованиях Ю.Я. Спиридонова и Т.Г. Хадеева осеннее (октябрь) применение гербицида в условиях европейского нечерноземья по средне-
многолетним данным давало снижение засоренности посевов на 81% в фазе трубкования и на 79% - перед уборкой урожая [11]. Осенние обработки обеспечивают оптимальные сроки борьбы с сорняками в посевах озимых зерновых культур, высокий уровень хозяйственной эффективности препаратов, позволяют значительно сократить объем весенних работ, существенно снизить риск загрязнения окружающей среды, увеличить период от момента внесения гербицида до посева чувствительной к нему культуры.

Таким образом, при возделывании озимой пшеницы в условиях Алтайского края целесообразно совершенствование технологии комплексного применения агрохимикатов, в том числе изучить возможность осенного применения гербицидов для борьбы с сорной растительностью.

Список литературы

Влияние различных приемов обработки почвы на засоренность зернопарового севооборота в Кулундинской степи
Д.В. Пургин, к. с.-х. наук
ГНУ Алтайский НИИСХ Россельхозакадемии

Среди многочисленных агroteхнических приемов обработка почвы всегда играла основную роль в создании урожая, так как этот прием является универсальным средством воздействия на многие физические, химические и биологические свойства почвы и, в конечном счете, на ее плодородие. Велика роль механической обработки почвы, также, в борьбе с засоренностью полей, болезнями и вредителями сельскохозяйственных растений [1].

В Кулундинской степи основополагающими задачами обработки почвы являются две: уничтожение или подавление сорной растительности (конкурентов зерновых культур) и обеспечение оптимальных условий для проведения последующих приемов обработки почвы, в т.ч. для посева, главное из которых — обеспечение влажного почвенного слоя на период оптимального срока сева зерновых культур [2].

Климатические условия зоны характеризуются холодной и продолжительной зимой, жарким, но коротким летом. Континентальность климата обусловлена устойчивым влиянием обезвоженных холодных арктических масс и тёплых сухих, приходящих со стороны пустынных районов Казахстана. Продолжительность периода с устойчивым снежным покровом составляет 150 – 155 дней, абсолютный минимум температуры воздуха достигает – 48 - 50°. Наибольшая глубина промерзания почвы за зиму – 305 см. Годовая сумма атмосферных осадков варьирует по годам в пределах 180-380 мм. Характерной особенностью рассматриваемой территории является большая продолжительность солнечного сияния (1650-2300 ч за год) и значительная сумма положительных температур (2000-2500°) [3].

Схема и методика закладки опытов
Полевой опыт проводился на полях Кулундинской сельскохозяйственной опытной станции на многолетних стационарах. Все обработки
почвы изучались в четырехпольном севообороте: пар — пшеница — пшеница — овес. Повторность в опыте четырехкратная с рендомизированным расположением вариантов. Площадь делянок 800 м² (80 x 10). Опыт заложен в полном факторном эксперименте (4 x 3) по каждому полю севооборота. Изучались 4 вида основной обработки почвы в целом по севообороту: плоскорезная, вспашка, поверхностная и поверхностная (Глифосат в пару) обработки почвы. На трех уровнях интенсификации (контроль, баковая сместь гербицидов Эфирам 0,6 л/га + Пума Супер 100 0,5 л/га и баковая сместь гербицидов Эфирам 0,6л/га + Пума Супер 100 0,5 л/га + удобрения в дозе N₄₀). В овсе Пума Супер 100 не вносилась. Объектом исследования являлись зерновые культуры (пшеница — Алтайская 105, овес - Корифей) на каштановой почве Западной подзоны Кулундинской степи в 2012 г. Учет сорняков проводится по методике Б.А. Доспехова (1965, 1972).

Результаты исследований

В фазу кущения первой пшеницы по пару более 90% от общей численности сорняков занимала группа однолетних злаковых сорняков (табл. 1). Количество сорняков варьировало от 35 шт./м² на вспашке до 119 шт./м² поверхностной обработке с Глифосатом в пару. Группа малолетних двудольных сорняков была малочисленна. Экономический порог вредоносности многолетними сорняками был превышен при применении поверхностной обработки с Глифосатом в пару на экстенсивном фоне - 10 шт./м² и 7 шт./м² на поверхностной обработке на фоне совместного применения гербицидов и удобрения.

На момент созревания первой пшеницы засоренность ее посевов снижалась практически по всем изучаемым вариантам. Снижение отмечалось, как на вариантах где была внесена баковая сместь гербицидов, так и на контрольных вариантах. В фазу созревания, как и в фазу кущения, более 90% от общего числа занимала группа злаковых сорняков.

В посевах второй пшеницы по пару в фазу кущения отмечалось увеличение общего числа сорняков по отношению к первой пшенице на данный период времени (табл. 2). На это увеличение повлияла группа злаковых сорняков. Здесь засоренность варьировала от 71 шт./м² на варианте вспашка с применением баковой смеси гербицидов и удобрения до 197 шт./м² на варианте поверхностная обработка на этом же фоне. Малолетние двудольные сорняки были малочисленны, но в некоторых вариантах со вспашкой их количество достигало 26 и 29 шт./м². Как и первой пшенице по пару порог вредоносности многолетними сорняками был превышен на мелких поверхностных обработках почвы.

В фазу созревания отмечалось снижение количества сорняков во всех группах. Общее их количество на данный период было не значительное.
<table>
<thead>
<tr>
<th>Обработка почвы</th>
<th>Средства химизации</th>
<th>Кущение</th>
<th>Сохранение</th>
<th>Вариант</th>
</tr>
</thead>
<tbody>
<tr>
<td>плоскорезная</td>
<td>Эфирам и Пу-</td>
<td>Однолетние злаковые</td>
<td>74</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>супер 100</td>
<td>Малолетние двудольные</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>вспашка</td>
<td>Многолетние</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>поверхностная</td>
<td>Всего</td>
<td>41</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>плоскорезная в пару</td>
<td>Однолетние злаковые</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>поверхностная</td>
<td>Малолетние двудольные</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>в пару</td>
<td>Многолетние</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>плоскорезная в пару</td>
<td>Всего</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Таблица 1

Наличие сорняков по группам в посевах первой пшеницы по пару, шт./м² 2012 г.

<table>
<thead>
<tr>
<th>Обработка почвы</th>
<th>Средства химизации</th>
<th>Кущение</th>
<th>Сохранение</th>
<th>Вариант</th>
</tr>
</thead>
<tbody>
<tr>
<td>вспашка</td>
<td>Эфирам и Пу-</td>
<td>Однолетние злаковые</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>поверхностная</td>
<td>супер 100</td>
<td>Малолетние двудольные</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>поверхностная</td>
<td>вспашка</td>
<td>Многолетние</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>поверхностная</td>
<td>плоскорезная в пару</td>
<td>Всего</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>плоскорезная в пару</td>
<td>поверхностная</td>
<td>Однолетние злаковые</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>плоскорезная в пару</td>
<td>вспашка</td>
<td>Малолетние двудольные</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>плоскорезная в пару</td>
<td>поверхностная</td>
<td>Многолетние</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>плоскорезная в пару</td>
<td>вспашка</td>
<td>Всего</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Наличие сорняков по группам в посевах второй пшеницы по пару, шт./м² 2012 г.

<table>
<thead>
<tr>
<th>Средства химизации</th>
<th>Обработка почвы</th>
<th>Кущение</th>
<th>Созревание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Однолетние злаковые</td>
<td>Малолетние двудольные</td>
<td>Многолетние</td>
</tr>
<tr>
<td>Контроль</td>
<td>103</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>плоскорезная (контроль)</td>
<td>83</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>вспашка</td>
<td>117</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>поверхностная</td>
<td>86</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>поверхностная с Г* в пару</td>
<td>136</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Эфирам и Пума Супер 100</td>
<td>79</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>плоскорезная</td>
<td>143</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>вспашка</td>
<td>93</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>поверхностная</td>
<td>123</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>поверхностная с Г* в пару</td>
<td>71</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Эфирам и Пума Супер 100 + N₄₀</td>
<td>197</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>плоскорезная</td>
<td>103</td>
<td>0</td>
<td>18</td>
</tr>
</tbody>
</table>
Наличие сорняков по группам в посевах овса, шт./м² 2012 г.

<table>
<thead>
<tr>
<th>Средства химизации</th>
<th>Обработка почвы</th>
<th>Кущение</th>
<th>Созревание</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Однолетние злаковые</td>
<td>Малолетние двудольные</td>
<td>Многолетние</td>
</tr>
<tr>
<td>Контроль</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>плоскорезная (контроль)</td>
<td>140</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>вспашка</td>
<td>129</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>поверхностная</td>
<td>65</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>поверхностная с Г* в пару</td>
<td>151</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Эфирам 100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>плоскорезная</td>
<td>133</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>вспашка</td>
<td>105</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>поверхностная</td>
<td>68</td>
<td>20</td>
<td>3</td>
</tr>
<tr>
<td>поверхностная с Г* в пару</td>
<td>186</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Эфирам 100 + N₄₀</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>плоскорезная</td>
<td>166</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>вспашка</td>
<td>177</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>поверхностная</td>
<td>69</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>поверхностная с Г* в пару</td>
<td>231</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
По мере удаления культуры от пара, в посевах овса в фазу кущения на большинстве изучаемых вариантах произошло увеличение всех групп сорняков (табл. 3). Засоренность злаковыми сорняками варьировала от 65 до 231 шт./м² в зависимости от приема обработки почвы и средств интенсификации. Количество малолетних двудольных сорняков незначительно увеличилось на поверхностных обработках почвы. В большинстве изучаемых вариантах многолетними сорняками был превышен порог вредоносности. Как и в предыдущих культурах, преимущество от общего числа имели злаковые сорняки.

В фазу созревания овса засоренность снизилась во всех группах и на всех изучаемых вариантах.

Выводы

В освоенном зернопаровом севообороте в условиях Кулундинской степи поверхностные обработки в фазу кущения в первых полях севооборота способствуют развитию группы злаковых сорняков. По мере удаления культуры от пара на более глубоких обработках почвы (вспашка и плоскорезная обработка) так же происходит накопление сорняков этой группы в данный период. К моменту созревания пшеницы и овса засоренность посевов по всем вариантах снижается и в подавляющем большинстве случаев, как и в фазу кущения, львиную долю занимают злаковые сорняки.

Список литературы

2. В.М. Гнатовский, Н.И. Лихачев, П.Н. Назаренко, Д.В. Пургин. Обработка почвы в зернопаровом севообороте Кулундинской степи / Рекомендации.- Барнаул, 2005.- 21 с.
4. Годовой отчет Кулундинской сельскохозяйственной опытной станции за 2012 год.
Особенности развития гороховой зерновки в условиях Алтайского Приобья

Г.Г. Садовников, к. с.-х. наук

ГНУ Алтайский НИИСХ Россельхозакадемии

Введение. В настоящее время наиболее опасным вредителем гороха в Алтайском крае является гороховая зерновка (*Bruchus Pisorum L.*), которая повреждает генеративные органы. В условиях края этот вредитель массовым стал недавно, причины его массового распространения нами не выяснены, но с 1999 г. он значительно тормозит производство гороха и вредоносность его постоянно растет. Семена гороха, поврежденные брухусом, теряют в весе 12...35% в зависимости от сорта, всхожесть семян снижается на 56 — 85%, употребление их становятся опасны для человека и скота [1].

По данным краевой СТАЗР (2006 - 2007 гг.), в некоторых районах края численность жуков доходит до 18 шт. на 100 растений, что превышает ЭПВ (10 шт. жуков/100 растений и 10 шт. заселенных семян/1 кг). [2].

Биологические и экологические особенности данного вредителя в условиях Алтайского Приобья изучены мало, а меры борьбы не разработаны. В связи с этим с 2006 г. нами было начато изучение биологии гороховой зерновки в условиях Алтайского Приобья.

Методы исследований. Изучение фенологии и биологических особенностей гороховой зерновки проводили на полях Алтайского НИИСХ в период с 2006 по 2008 гг. Для определения фаз развития проводили кошения в посевах гороха, учет яиц на бобах, учет заселенности семян гороха [3].

Погодные условия вегетационного периода в годы исследований сложились благоприятно для возделывания гороха: 2006 год — увлажнённый, осадков выпало 208,4 мм; 2007 г. — засушливый, сумма осадков 185,6 мм (на 45 мм ниже среднемноголетней). В 2008 г. количество осадков составило 180,4 мм. Сумма положительных температур в годы исследований близка к среднемноголетним значениям.

Результаты исследований. На основании наблюдений была изучена динамика развития гороховой зерновки (*Bruchus pisorum L.*) (таблица).

Гороховая зерновка относится к К-стратегам. Данная жизненная стратегия характеризуется небольшой (70-220 яиц) плодовитостью, узкой трофической нишей (зерновки гороха), заботой о потомстве (личинка прогрызает выходные отверстия для выхода жука из зерна), одной генерацией потомков в году, относительно стабильной динамикой численности.
Динамика развития гороховой зерновки (*Bruchus pisorum L.*) на посевах гороха в условиях Алтайского Приобья

<table>
<thead>
<tr>
<th>Количество генераций</th>
<th>Зимующая фаза</th>
<th>Май</th>
<th>Июнь</th>
<th>Июль</th>
<th>Август</th>
<th>Сентябрь</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Развитие культуры
- посев гороха
- всходы
- бутонизация
- цветение и формирование бобов
- созревание гороха
- полная спелость
- уборка
- период хранения

Условные обозначения: + - имаго; 0 - яйцо; - - личинка; о - куколка
По характеру пищевой специализации зерновка — специализированный фитофаг, развивающийся исключительно на культурном горохе. Узкая пищевая специализация гороховой зерновки выражается в ее способности, проявляющейся как у личинок, так и у имаго, использовать для питания горох в строго определенной фазе развития.

Появление гороховой зерновки на посевах гороха в большей степени зависит от природно-климатических условий. Таким образом, эффективная защита гороха от вредителя возможна только при своевременном мониторинге динамики сезонного лета гороховой зерновки и суммы эффективных температур. В условиях Алтайского края динамика лёта этого вредителя имеет свои особенности, что свидетельствует о необходимости уточнения и изучения его фенологии в региональных агроэкологических условиях.

Выход жуков зерновки из семян гороха в условиях Алтайского Приобья начинается 17-20 мая. Сумма эффективных температур (СЭТ выше 10 °С) к этому времени составляет 152-175 °С. Лет жуков на многолетних травах обычно отмечается с 19-30 мая при среднесуточной температуре воздуха +15+20 °С. Жуки концентрируются на диких раннецветущих растениях (одуванчик, подорожник большой, земляника, пастушья сумка), получая дополнительное питание до перехода на основное кормовое растение — горох.

Начало заселения посевов фитофагом происходит во второй декаде июня при среднесуточной температуре воздуха +20+22 °С. Нарастание численности вредителя отмечается в третьей декаде июня и в начале первой декады июля. Это связано с наличием эффективного корма для созревания (пыльца гороха), и оптимальными погодными условиями (среднесуточная температура воздуха +20+29 °С, и относительная влажность его 55-62%). Питание пыльцой продолжается 10-15 дней.

Яйцекладка на створки бобов отмечается в третьей декаде июня, т. е. во время цветения и образования бобов. Интенсивность которой зависит от погодных условий, возрастая при среднесуточной температуре воздуха +27+30 °С. При понижении температуры воздуха до +15+18 °С и продолжительных дождях активность яйцекладки снижается. В наших исследованиях период яйцекладки длился 35 - 40 дней. Для откладки яиц самки предпочитают бобы, находящиеся в середине-конце X этапа органогенеза. Численность яиц доходит до 20 штук на боб.

Эмбриональное развитие в среднем длиться 7 – 11 дней. Период отрождения личинок начинается в конце первой - начале второй декады июля, (во время формирования бобов) и заканчивается во второй декаде августа (в фазу полной спелости).

После выхода из яйца личинка сразу внедряется в боб, а затем в горошину. Проникновение личинок возможно лишь до одревесления стенок сосудов, а также клеток пергаментного слоя. Развитие личинки (с 1 по 4
возраст) внутри горошины длится 35 - 48 дней. Перед окукливанием ли­
чинка кольцеобразно прогрызает кожицу горошины. В каждом зерне, не
зависимо от количества отложенных на боб яиц, развивается только одна
личинка.
В конце третьей декады июля – в первых числах августа, в период со­
зревания гороха отмечается фаза куколки, которая длится 37 - 45 дней (до
второй декады сентября). Взрослое насекомое (имаго) появляется в конце
августа - первой декаде сентября, в этот период семена гороха находятся в
стадии покоя. Насекомые, не закончившие свое развитие из-за наступле­
ния низких температур воздуха (ниже 15 °C), зимуют в фазе куколки, за­
канчивая свое развитие весной.
Результаты наших исследований подтверждают принцип сопряженно­
го развития вредителя *Bruchus pisorum* L. и хозяина *Pisum sativum* L.: появ­
ление жуков зерновки, питание пыльцой с последующим созреванием са­
мок в период бутонизации – начала цветения (схема).

Реализация принципа сопряженности развития паразита –
Bruchus pisorum L.) и его хозяина – *(Pisum sativum* L.)

<table>
<thead>
<tr>
<th>Стадия развития хозяина</th>
<th>Стадия развития паразита</th>
</tr>
</thead>
<tbody>
<tr>
<td>Посев гороха (хозяина)</td>
<td>Выход паразита из семян хозяина</td>
</tr>
<tr>
<td>Период бутонизации – начало цветения</td>
<td>Появление жуков из мест зимовок, питание пыльцой, созревание самок</td>
</tr>
<tr>
<td>Период массового цветения</td>
<td>Спаривание, откладка яиц на молодые завязи</td>
</tr>
<tr>
<td>Развитие плода гороха:</td>
<td></td>
</tr>
<tr>
<td>1. Развитие створок боба</td>
<td>Спаривание, откладка яиц на наружные створки плоских бобов</td>
</tr>
<tr>
<td>Фаза развития или формирования боба</td>
<td></td>
</tr>
<tr>
<td>Период интенсивного роста створок плода, накопление в них сухих веществ</td>
<td>Вылупление, с последующим внедрением, проникновение внутрь семе­ни личинок первого возраста</td>
</tr>
<tr>
<td>Период максимальных размеров створок, содержание в них максимального количе­ства сухих веществ</td>
<td></td>
</tr>
<tr>
<td>2. Развитие семян</td>
<td></td>
</tr>
<tr>
<td>Начало формирование семян</td>
<td>Развитие личинок второго возраста</td>
</tr>
<tr>
<td>Фаза начала налива семян</td>
<td>Развитие личинок третьего возрас­та. развитие куколки</td>
</tr>
<tr>
<td>Фаза серединцы налива семян</td>
<td></td>
</tr>
<tr>
<td>Уборочная спелость семян</td>
<td>Развитие личинок четвертого возрас­та</td>
</tr>
<tr>
<td>Полная спелость семян</td>
<td></td>
</tr>
<tr>
<td>Период зимнего хранения семян гороха</td>
<td>Отрождение жука нового поколения, зимовка, вылет</td>
</tr>
</tbody>
</table>

В зависимости от погодных условий гороховая зерновка развивается по-разному. Так в условиях почвенной засухи в 2008 г. было отмечено са-
мое раннее появление жуков зерновки – 14 июня, соответственно, в этом году значительно раньше началась и яйцекладка зерновки. В 2007 г. заселение посевов гороха жуками из-за резких перепадов среднесуточной температуры и повышенной влажности воздуха (65-67 %, оптимальная 50-60 %) оказалась менее активным. При этом плодовитость данного фитофага была высокой, на некоторых бобах количество отложенных яиц доходило до 18-20 шт., тогда как в 2006 и 2008 г. их количество не превышало 6-8 шт./боб.

В целом динамика развития гороховой зерновки на посевах гороха в 2006 году оставалась более стабильной в сравнении с 2007 и 2008 годами. Таким образом, на динамику развития гороховой зерновки значительно влияет в первую очередь колебания температуры, влажность и другие климатические факторы, которые необходимо учитывать при разработке защитных мероприятий против данного фитофага.

Литература

УДК 632.51: 632.954: 571.15

Эффективность действия эстерона, КЭ и дианата, ВР на вьюнок полевой

Н.Н. Садовникова, мл. н. с., Г.Я. Стецов, д. с.-х. наук

ГНУ Алтайский НИИСХ Россельхозакадемии

Введение. Высокая засоренность сельскохозяйственных угодий является одним из важных факторов снижения урожая. По данным Россельхозцентра в Алтайском крае ежегодно отмечается увеличение плотности засорения пашни, особенно корнеотпрысковыми сорняками. Одним из доминирующих видов данной группы, в крае является вьюнок полевой [1].

В посевах он конкурирует с культурой за воду и элементы питания. Выходя в верхний ярус опутывает культурные растения, тем самым затрудняет уборку и засоряет зерно. В Украине получены данные о снижении урожайности озимой пшеницы, при наличии 10 растений вьюнка на 1
на 9,6 %, кукурузы на 7,1 %, гороха на 6,3 % [2]. В Павлодарском Приуралье урожайность пшеницы снижалась на 3,4 % при наличии 2 растений вьюнка полевого на 1 м² и на 38,1 % при 20 растениях на 1 м² [3].

Учитывая высокую вредоносность вьюнка полевого, возникает необходимость разработки эффективных мер борьбы с ним. Контроль его численности легче проводить в паровом поле с помощью неселективных гербицидов на основе глифосата, но данный способ требует больших денежных вложений, так как нормы расхода гербицида, в зависимости от концентрации препарата, зачастую превышают 3 л/га. Для экономии финансовых вложений и исключения опасности наработки резистентности сорняком к глифосату, опрыскивание против вьюнка полевого возможно проводить дикотицидами системного действия Эстероном, КЭ (сложный 2-этилгексиловый эфир 2,4-Д) и Дианатом, ВР (диметиламина соль дикамбы).

На опытном поле Алтайского НИИСХ в период с 2009 по 2012 гг. нами были проведены исследования, целью которых было оценить эффективность гербицидов Эстерон, КЭ и Дианат, ВР против вьюнка полевого и определить оптимальные нормы их расхода.

Объекты и методы исследования. Объектами исследования являлись: вьюнок полевой, гербициды.

Использованные в опыте гербициды обладают гормональным типом действия, отличным от механизма действия глифосата. В растения они хорошо проникают через надземные органы, адсорбируются листьями, а при хорошем увлажнении и корнями, затем с высокой скоростью передвигаются по общей транспортной системе к точкам роста и подавляют их, что позволяет увидеть эффект их действия уже через несколько часов после опрыскивания [4,5]. Недостатком применения гербицидов данного типа в паровом поле является их избирательность по отношению к однодольным сорнякам.

Подготовка парового поля включала две механические обработки в начале лета, это позволяло синхронизировать сроки развития растений вьюнка полевого и снять малолетние сорняки [6]. После отрастания вьюнка проводили гербицидную обработку.

Опрыскивание начинали при появлении единичных бутонов (перед цветением), что согласуется с рекомендациями Н.Г. Власенко [6]. В эту fazu rosta у вьюнка ещё преобладает нисходящий ток ассимилянтов, который дополняется большой площадью листовой поверхности, способствующей получению сорняком большой дозы гербицида. Данной fazе развития вьюнок достигал ко второй, третьей декаде августа (таблица 1).
Таблица 1

Параметры закладки опыта на пару

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Дата закладки опыта</td>
<td>14 августа</td>
<td>27 августа</td>
<td>15 августа</td>
</tr>
<tr>
<td>Побегов вьюнка на момент обработки, шт./м²</td>
<td>18</td>
<td>33</td>
<td>15</td>
</tr>
<tr>
<td>Средняя длина побега вьюнка полевого, см</td>
<td>29</td>
<td>32</td>
<td>39</td>
</tr>
</tbody>
</table>

Препараты изучали с разными нормами расхода, в чистом виде и с добавлением ПАВ (схема опыта представлена в табл. 2).

В опыте проводили следующие учеты и наблюдения: визуальная диагностика повреждений корневой системы вьюнка полевого перед уходом в зиму и весной, учет численности побегов сорняка в посеве пшеницы по обработанному пару в период кущения, и определение их удельного веса в период колошения культуры.

Результаты исследования. Через 70 дней после закладки опыта на вариантах, обработанных Дианатом, ВР, наблюдались жизнеспособные горизонтальные корни вьюнка полевого с просыпающимися почками (рисунок 1).

В это же время на вариантах с применением Эстерона, КЭ наблюдалось сильное разрушение корневой системы (рисунок 2). Независимо от нормы расхода Эстерона, КЭ корневая система практически полностью разрушалась на глубину до 20 см.

Рисунок 1 – Корневая система вьюнка полевого, обработанного Дианатом, ВР, перед уходом в зиму: пробуждение спящих почек.

Дальнейшие наблюдения в весенний период показали, что на вариантах применения Дианата, ВР в чистом виде с нормой расхода 0,4 л/га, наблюдалась деформация корней, часть спящих почек пробуждалась, но новые отпрыски не появлялись. С повышением нормы расхода препарата воздействие на корневую систему становилось визуально более заметным.

Эстерон, КЭ в чистом виде, даже при минимальной изученной норме расхода - 1,2 л/га способствовал полному разрушению корневой системы вьюнка полевого.
Визуальный эффект от добавления ПАВ был более заметен на вариантах опрыскивания Дианатом, ВР, особенно при добавлении Стикера, Ж. На вариантах добавления ПАВ к Эстерону, КЭ усиления действия препарата не отмечалось.

Учет численности побегов вьюнка полевого в фазу кущения пшеницы (последующей культуры) показал, что на всех вариантах опыта их количество снижалось на 92–99 % по отношению к контролю (таблица 2).

Таблица 2
Влияние применения дикотицидов в паровом поле на количество побегов вьюнка полевого в посевах пшеницы, 2010–2012 гг.

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Количество побегов</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>шт./м²</td>
</tr>
<tr>
<td>1. Дианат. ВР - 0,4 л/га</td>
<td>5</td>
</tr>
<tr>
<td>2. Дианат. ВР - 0,5 л/га</td>
<td>4</td>
</tr>
<tr>
<td>3. Дианат. ВР - 0,6 л/га</td>
<td>3</td>
</tr>
<tr>
<td>4. Дианат. ВР - 0,4 л/га + Тренд 90, Ж - 0,2 л/га</td>
<td>4</td>
</tr>
<tr>
<td>5. Дианат. ВР - 0,4 л/га + Стикера, Ж - 0,2 л/га</td>
<td>6</td>
</tr>
<tr>
<td>6. Эстерон, КЭ - 1,2 л/га</td>
<td>1</td>
</tr>
<tr>
<td>7. Эстерон, КЭ - 1,5 л/га</td>
<td>1</td>
</tr>
<tr>
<td>8. Эстерон, КЭ - 1,8 л/га</td>
<td>1</td>
</tr>
<tr>
<td>9. Эстерон, КЭ - 1,2 л/га + Тренд 90, Ж - 0,2 л/га</td>
<td>1</td>
</tr>
<tr>
<td>10. Эстерон, КЭ - 1,2 л/га + Стикера, Ж - 0,2 л/га</td>
<td>2</td>
</tr>
<tr>
<td>11. Контроль (без гербицидов)</td>
<td>79</td>
</tr>
<tr>
<td>НСР 5 шт.</td>
<td>5</td>
</tr>
</tbody>
</table>

Рисунок 2 – Корневая система вьюнка полевого, обработанного Эстероном, КЭ, перед уходом в зиму: практически полная её деструкция
Дианат, ВР лучше подавлял вьюнок при максимальной норме расхода – 0,6 л/га, а Эстерон, КЭ с высокой токсичностью действовал на сорняк даже при норме – 1,2 л/га.

Доля вьюнка полевого в сырой биомассе фитоценоза пшеничного поля после обработки гербицидами находилась в пределах от 0 до 1,7% против 22,5% на контроле (табл. 3).

Таблица 3

Влияние применения дикотицидов в паровом поле на удельный вес побегов вьюнка полевого в сырой биомассе пшеничного ценоза, 2010–2012 гг.

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Вариант</th>
<th>Доля сорняков в сырой биомассе агрофитоценоза, %</th>
<th>Доля вьюнка полевого в составе засоренности, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>всего</td>
<td>в т.ч. вьюнка полевого</td>
</tr>
<tr>
<td>1. Дианат, ВР - 0,4 л/га</td>
<td>3,0</td>
<td>1,7</td>
<td>56,7</td>
</tr>
<tr>
<td>2. Дианат, ВР - 0,5 л/га</td>
<td>1,8</td>
<td>0,4</td>
<td>22,2</td>
</tr>
<tr>
<td>3. Дианат, ВР - 0,6 л/га</td>
<td>1,6</td>
<td>0,5</td>
<td>31,3</td>
</tr>
<tr>
<td>4. Дианат, ВР-0,4 л/га + Тренд 90, Ж - 0,2 л/га</td>
<td>2,4</td>
<td>1,3</td>
<td>54,2</td>
</tr>
<tr>
<td>5. Дианат, ВР-0,4 л/га + Стикер, Ж - 0,2 л/га</td>
<td>4,1</td>
<td>1,6</td>
<td>39,0</td>
</tr>
<tr>
<td>6. Эстерон, КЭ - 1,2 л/га</td>
<td>2,3</td>
<td>0,3</td>
<td>13,0</td>
</tr>
<tr>
<td>7. Эстекон, КЭ - 1,5 л/га</td>
<td>1,9</td>
<td>0,1</td>
<td>5,3</td>
</tr>
<tr>
<td>8. Эстерон, КЭ - 1,8 л/га</td>
<td>1,1</td>
<td>0,1</td>
<td>9,1</td>
</tr>
<tr>
<td>9. Эстерон, КЭ - 1,2 л/га + Тренд 90, Ж-0,2 л/га</td>
<td>3,9</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>10. Эстерон, КЭ - 1,2 л/га + Стикекер,Ж-0,2 л/га</td>
<td>2,6</td>
<td>0,3</td>
<td>11,5</td>
</tr>
<tr>
<td>11. Контроль (без гербицидов)</td>
<td>24,3</td>
<td>22,5</td>
<td>92,6</td>
</tr>
</tbody>
</table>

Достоверных различий между вариантами опыта не наблюдалось.

Добавление к Дианату, ВР и Эстерону, КЭ ПАВов не привело к существенному повышению их эффективности.

Заключение

Технология подготовки парового поля к опрыскиванию дикотицидами должна начинаться с двух механических обработок в начале лета, далее необходимо дождаться фазы начала цветения у вьюнка полевого и провести гербицидную обработку. Для эффективного подавления вьюнка достаточно применить Дианат, ВР в норме 0,4 л/га или Эстерон, КЭ в норме 1,2 л/га. Учитывая устойчивость злаковых сорняков к данной группе гербицидов, опрыскивание следует проводить только в случае отсутствия угрозы их обсеменения. При угрозе обсеменения злаков - планировать дополнительные приемы их регулирования.
Урожайность гороха в зависимости от приемов обработки почвы и средств интенсификации

С.В. Усенко, к.с.-х.н.

ГНУ Алтайский НИИСХ Россельхозакадемии

Горох является наиболее распространенной культурой среди зерновых бобовых в России (доля его в посевах зернобобовых культур достигает 82%). Характеризуется большим разнообразием способов использования как для продовольственных, так и для кормовых целей. По урожаю зерна горох почти не уступает яровой пшенице, а по выходу белка с гектара превышает все зерновые в 2-3 раза. В семенах гороха в среднем 27,8% белка, содержащего все незаменимые аминокислоты. По их составу белок гороха близок к белку мяса и молока, поэтому его усвояемость человеческим организмом достигает 83,0-87,4%. [2,4]

После уборки гороха в почве остается до 50 кг/га азота, что равноценно внесению 10 т/га навоза. Благодаря мощной развитой корневой системе, проникающей вглубь до полутора метров, эта культура способна усваивать из почвы фосфорнокислые и другие труднодоступные для злаковых культ-
тур соединения, а также переносить питательные вещества почвы из глубоких слоев в верхний пахотный слой. Многочисленные исследования свидетельствуют, что горох как предшественник практически не уступает чистому пару. Агротехническое значение гороха во многом определяется величиной урожая: чем он выше, тем больше положительная роль гороха в севообороте как предшественника для последующих культур.

Короткий вегетационный период, холодостойкость, высокие кормовые достоинства, возможность широкого использования на продовольственные и кормовые цели, ценность в качестве предшественника прежде всего для сильных и твердых сортов яровой пшеницы делают его незаменимой культурой для обширного и сложного по почвенно-климатическим условиям региона Западной Сибири [1,2,3,5]

Исследования проводились на опытном поле АНИИСХ, методом многофакторного полевого опыта в 2011-2012 гг. Опытный участок расположен на склоне юго-восточной экспозиции с уклоном до 1°. Почва — чернозем выщелоченный среднемощный среднесуглинистый. Содержание общего гумуса 3,8%, общего азота 0,30%, фосфора 0,17%. Реакция почвенного раствора нейтральная (pH 6,9). Методика проведения опытов — общепринятая. В системе 6-ти полного зернопарового севооборота (предшественник — пшеница) изучались элементы технологии возделывания гороха по следующей схеме:

Фактор А — обработка почвы
1. Без основной обработки;
2. Мелкая плоскорезная на 14-16 см (КПШ-5);
3. Глубокая плоскорезная на 25-27 см (КПГ-250).

Фактор В — удобрение
1. Без удобрений (0);
2. Р25 в рядок при посеве (Р25);
3. Р25 в рядок при посеве +Р55 основное (Р80).

Фактор С — защита растений
1. Без защиты (контроль) (0);
2. Защита от двудольных сорняков (Г-1);
3. Защита от двудольных и злаковых сорняков (Г-2);
4. Защита от сорняков и вредителей (ГИ).

Расположение делянок систематическое, повторность трехкратная. Метеорологические условия в годы проведения исследований существенно различались между собой, что повлияло на формирование урожайности. За годы исследований выпало от 317,0 до 374,6 мм осадков, или 79,3-93,7 % от среднемноголетних показателей, что неблагоприятно сказалось на росте и развитии культуры. Наименьшее количество осадков отмечено в 2012 году. Как в 2011, так и в 2012 гг. на всем протяжении вегетации отмечено проявление засухи.

46
После уборки предшественника на соответствующих вариантах опыта проводили поверхностную обработку почвы БДН-3 с последующей основной обработкой согласно схеме. Весной — ранневесеннее боронование БЭСС-1,0. До посева, согласно схеме опыта вносили удобрения сейлкой СЗС-2,1. На необработанном с осени фоне механическая обработка заменялась опрыскиванием гербицидом сплошного действия (ГлифАлт) осенью и весной с нормой расхода препарата 3 л/га.

Посев проводили сейлками СЗС-2,1 и Semeato TDNG 420, норма высева — 1,2 млн. шт./га. сорт гороха — Варяг.

В течение вегетации, на соответствующих вариантах, посевы обрабатывались гербицидами и инсектицидами. Против двудольных сорняков применяли Хармони (10 г/га), против однодольных Фуроре Ультра (1 л/га), против вредителей Алтальф 0,01 л/га. Уборка и учет урожая осуществлялись при достижении полной спелости культуры.

Урожайность гороха в среднем по годам в зависимости от факторов варьировала от 0,63 до 1,64 т/га. Уменьшение глубины основной обработки почвы, также как и отказ от её проведения, приводило к снижению продуктивности гороха. Так, урожайность гороха без использования средств интенсификации на фоне глубокой плоскорезной обработки составила 1,05 т/га, на фоне мелкой плоскорезной — 0,63 т/га, на необработанном с осени фоне — 0,73 т/га. При этом наименьшие значения продуктивности гороха на фоне мелкой плоскорезной обработки отмечены как в 2011, так и в 2012 году. В среднем же по опыту, продуктивность гороха была существенно выше на фоне глубокой плоскорезной обработки и составляла 1,31 т/га, что выше, чем при проведении мелкой обработки на 0,31 т/га, и на 0,37 т/га при отказе от её проведения.

Насыщение технологии возделывания гороха элементами интенсификации сопровождалось увеличением продуктивности культуры. Отмечено, что наибольшую прибавку внесение фосфорных удобрений обеспечивало на обработанных с осени фонов. Так, прибавка от внесения фосфора в рядок при посеве на вариантах с проведением глубокой и мелкой плоскорезных обработок составила 0,13 и 0,21 т/га (12,4 и 33,4%) соответственно, в то время как на варианте без обработки прибавка составила лишь 0,07 т/га или 9,6%. Прибавка от внесения стартовой дозы фосфора на фоне основного внесения отмечена только при проведении с осени мелкой плоскорезной обработки и отказа от нее — 0,19 и 0,14 т/га, или 22,6 и 17,5% соответственно. При внесении полной дозы фосфорного удобрения на фоне глубокого плоскорезного рыхления отмечена тенденция к снижению урожайности культуры по отношению к рядковому его внесению на 0,05 т/га. Это, по нашему мнению, объясняется избыточным содержанием подвижного фосфора на данном варианте опыта. В среднем по опыту, достоверное увеличение продуктивности гороха от внесения фосфорного удобрения отмечено при его рядковом внесении и составило 0,15 т/га.
Таблица
Урожайность гороха в зависимости от приема основной обработки почвы и средств химизации (2011-2012 гг.), т/га

<table>
<thead>
<tr>
<th>Обработка (фактор А)</th>
<th>Удобрение (фактор В)</th>
<th>Защита растений (фактор С)</th>
<th>Средние по В</th>
<th>Средние по А</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубокая плоскорезная</td>
<td>0 1,05 1,16 1,20 1,32</td>
<td>0,95</td>
<td>1,31</td>
<td></td>
</tr>
<tr>
<td>0 1,18 1,32 1,37 1,54</td>
<td>1,10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1,13 1,42 1,43 1,64</td>
<td>1,21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Мелкая плоскорезная</td>
<td>0 0,63 0,83 0,93 1,01</td>
<td>1,00</td>
<td>1,00</td>
<td></td>
</tr>
<tr>
<td>0 0,84 0,94 1,00 1,11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1,03 1,19 1,23 1,27</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Без обработки</td>
<td>0 0,73 0,86 0,87 0,96</td>
<td>0,94</td>
<td>0,94</td>
<td></td>
</tr>
<tr>
<td>0 0,80 0,91 1,00 1,07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0,94 0,99 1,07 1,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Средние по С</td>
<td>0,92 1,07 1,12 1,23</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

НСР₀₅ для факторов: A-0,14; B-0,14; C-0,17; AВС-0,45

Применение химических средств защиты растений снижает конкурентцию культуры с сорняками за влагу и элементы питания, а также уменьшает угнетающее действие вредных объектов, оказывало положительное влияние на урожайность гороха. Так, использование гербицидов против двудольных сорняков в посевах гороха сопровождалось ростом продуктивности культуры относительно контроля, в зависимости от приема основной обработки, на 0,11-0,20 т/га (10,5-31,7%), наибольшая прибавка при этом отмечена на фоне мелкой плоскорезной обработки. Баковая смесь против двудольных и однодольных сорняков приводила к увеличению урожая относительно опрыскивания дикотицидом на 0,01-0,10 т/га (1,2-12,0%) с преимуществом мелкой обработки. Опрыскивание посевов инсектицидом на фоне гербицидов обеспечило прибавку урожая по отношению к фону в 0,08-0,12 т/га в зависимости от обработки почвы. В среднем по опыту, существенная прибавка от применения средств защиты растений получена лишь при использовании гербицида против двудольных и составила 0,15 т/га.

Наибольшая урожайность по всем изучаемым обработкам почвы получена при использовании всего комплекса химизации, где она составила 1,15 т/га на необработанном с осени фоне, 1,27 т/га на фоне мелкой плоскорезной и 1,64 т/га на фоне глубокой плоскорезной обработки почвы, а прибавка относительно контроля находилась в пределах 0,42-0,64 т/га (57,5-101,6%).
Выводы

Без применения средств химизации, наибольшая урожайность гороха - 1,05 т/га, отмечена на фоне глубокого плоскорезного рыхления. Существенная прибавка от внесения фосфорных удобрений - 0,15 т/га или 15,8% отмечена при рядковом его внесении, от применения средств защиты - 0,15 т/га при опрыскивании посевов гербицидом против двудольных сорняков. Технология возделывания гороха, основанная на глубоком плоскорезном рыхлении на глубину 25-27 см, применении гербицидов против двудольных и однодольных сорняков и инсектицида, обеспечивала лучшие условия для произрастания культуры, улучшала фитосанитарное состояние посевов и способствовала получению урожайности культуры в 2011-2012 гг. на 1,64 т/га.

Список литературы

1. Беспамятный В.И., Сильченко Н.Ф. Возделывание гороха в Алтайском крае / СО ВАСХНИЛ. - Новосибирск, 1986. - 17 с.

УДК 633.11:631.51:631.82:632.95

Влияние приемов обработки почвы и средств интенсификации на экономическую эффективность возделывания пшеницы

С.В. Усенко, к.с.-х.наук, А.В. Куркин, м.н.с.

ГНУ Алтайский НИИСХ Россельхозакадемии

Традиционная технология возделывания зерновых культур с зяблевой обработкой характеризуется большой трудоемкостью и высокими энергоатратами. Один из путей оптимизации технологий – минимизация обработки почвы, как по количеству операций, так и по глубине. Переход к минимальным и нулевым обработкам позволяет вполовину уменьшить
расходы на горючее при небольшом кратковременном снижении урожайности. Однако широкое применение минимальных обработок сдерживается рядом причин: во-первых, возрастает засоренность посевов, во-вторых, увеличивается потребность в азотных удобрениях. Проведенные в 2011-2012 гг. наблюдения за влиянием приемов основной обработки почвы, в том числе и отказа от её проведения, при различных уровнях применения средств интенсификации на величину урожая яровой пшеницы показали, что на склоновых землях в условиях Алтайского Приобья преимущество имеет глубокая плоскорезная обработка почвы. Но помимо агрономической ценности, элементы технологии должны обеспечивать высокую доходность и рентабельность производства.

Исследования проводили на комплексном стационаре лаборатории технологической политики и агротехнологий Алтайского НИИСХ в 6-польном зернопаровом севообороте: пар-пшеница-овес-пшеница-горох-пшеница и при бессменном возделывании пшеницы в стационарном трехфакторном полевом опыте, заложенном по схеме:

фактор A – прием и глубина основной обработки почвы: 1) без обработки; 2) глубокая плоскорезная обработка КПГ-250 на 25-27 см;

фактор B – уровень применения минеральных удобрений: 1) без применения удобрений – 0; 2) рядковое фосфорное удобрение при посеве – P25; 3) рядковое (P25) + основное азотное (N40) удобрение – N40P25;

фактор C – уровень применения средств защиты растений: 1) без применения средств защиты – 0; 2) гербицид против двудольных сорняков – Г-1; 3) гербициды против двудольных и однодольных сорняков – Г-2; 4) гербициды против двудольных и однодольных сорняков, инсектицид и фунгицид – ГИФ.

В опыте высевали среднеспелый сорт пшеницы Алтайская 100. В расчетах использованы цены реализации зерна 3 класса – 6000 руб./т. Стоимость гектарной нормы удобрений и средств защиты растений принимали, исходя из сложившихся на рынке цен, в размере: фосфорных – 880 руб./га, азотных – 1392 руб./га, гербицида против двудольных сорняков – 220 руб./га, против однодольных – 570 руб./га, инсектицида – 160 руб./га, фунгицида – 530 руб./га. При оценке экономической эффективности нами определялась стоимость основной продукции, затраты на ее выращивание (на 1 га) и себестоимость (на 1 т), чистый доход и уровень рентабельности. Затраты на технологические операции при возделывании яровой мягкой пшеницы рассчитывали по технологическим картам.

Результаты наших наблюдений показали, что отказ от проведения механической обработки с осени, наряду со снижением урожайности сопровождался увеличением издержек. Так, общие затраты на возделывание яровой пшеницы без применения удобрений и средств защиты растений по вегетации на необработанном фоне составляли в зависимости от предшественника 4789-6219 руб./га, что выше чем при проведении глубокой
плоскорезной обработки на 959-1003 руб./га за счет использования доро-
гостоящего гербицида сплошного действия (табл. 1, 2). Себестоимость по-
лученной продукции закономерно ниже была на вариантах с осенней об-
работкой – 3191-7011 руб./т, в то время как при отказе от механической
обработки она возрастила до 5057-10525 руб./т. Проведение основной об-
работки, в отличие от необработанного фона, также способствовало полу-
чению большего чистого дохода, который составил при возделывании
пшеницы: по пару – 3740 против 1161 руб./га, по гороху – 3483 против 676
руб./га, по овсу – 548 против 850 руб./га убытков, возделывание пшеницы
в бессменных посевах оказалось экономически невыгодным во всех вари-
антах опыта.

Внесение фосфорного удобрения в рядок при посеве увеличивало се-
бестоимость полученной продукции по всем предшественникам и приемам
обработки почвы. Увеличение полученного чистого дохода (с 3740 до 3955
руб./га) отмечено лишь при возделывании пшеницы по пару при проведе-
нии глубокой основной обработки, в остальных случаях величина чистого
дохода снижалась, а вместе с ней снижался и уровень рентабельности.

Применение азотно-фосфорных удобрений обеспечило рост экономи-
ческих показателей лишь на варианте с глубокой обработкой с осени при
возделывании пшеницы по овсу, где внесение удобрений на фоне доста-
точных запасов влаги позволило получить ощутимую прибавку урожая,
покрывшую затраты на внесение средств интенсификации. Внесение пол-
ной дозы удобрений на необработанном фоне при возделывании пшеницы
по овсу не обеспечило увеличения продуктивности, в результате чего на
dанном варианте зафиксирован убыток в 2447 руб./га. Также убыток полу-
чен при отказе от обработки при возделывании пшеницы по гороху, где он
составил 635 руб./га. Снижение чистого дохода при возделывании пшени-
цы по пару с применением азотно-фосфорных удобрений отмечено как
при проведении глубокой обработки, так и при отказе от нее.

Применение в посевах пшеницы после пара гербицида против дву-
дольных сорняков незначительно увеличивало затраты на возделывание
культуры, которые на всех фонах обработок при всех уровнях применения
удобрений способствовало увеличению чистого дохода на 55-1495 руб./га,
при уровне рентабельности 22-89%, по отношению к фону без применения
гербицидов. Увеличение чистого дохода при возделывании пшеницы по
овсу и гороху от применения дикотицида отмечено на фоне глубокой
плоскорезной обработки почвы без внесения и с внесением азотно-
фосфорных удобрений – 325-535 и 595 руб./га, при уровне рентабельности
21-16 и 97-53% соответственно.
Таблица 1
Экономическая эффективность технологий возделывания яровой пшеницы по пару и бессменно, 2011-2012 гг.

<table>
<thead>
<tr>
<th>Удобрения</th>
<th>Средства защиты растений</th>
<th>Пшеница по пару</th>
<th>Пшеница бессменно</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Урожайность, т/га</td>
<td>Себестоимость зерна, руб./т</td>
</tr>
<tr>
<td>Подкормка</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1,50</td>
<td>3507</td>
</tr>
<tr>
<td></td>
<td>Г-1</td>
<td>1,73</td>
<td>3177</td>
</tr>
<tr>
<td></td>
<td>Г-2</td>
<td>1,83</td>
<td>3315</td>
</tr>
<tr>
<td></td>
<td>ГИФ</td>
<td>2,18</td>
<td>3107</td>
</tr>
<tr>
<td>0</td>
<td>П25</td>
<td>1,69</td>
<td>3424</td>
</tr>
<tr>
<td></td>
<td>Г-1</td>
<td>1,74</td>
<td>3461</td>
</tr>
<tr>
<td></td>
<td>Г-2</td>
<td>2,06</td>
<td>3200</td>
</tr>
<tr>
<td></td>
<td>ГИФ</td>
<td>2,22</td>
<td>3288</td>
</tr>
<tr>
<td>0</td>
<td>N40P25</td>
<td>1,70</td>
<td>4303</td>
</tr>
<tr>
<td></td>
<td>Г-1</td>
<td>1,81</td>
<td>4172</td>
</tr>
<tr>
<td></td>
<td>Г-2</td>
<td>2,12</td>
<td>3831</td>
</tr>
<tr>
<td></td>
<td>ГИФ</td>
<td>2,40</td>
<td>3686</td>
</tr>
<tr>
<td>0</td>
<td>N40P25</td>
<td>1,37</td>
<td>5282</td>
</tr>
<tr>
<td></td>
<td>Г-1</td>
<td>1,52</td>
<td>4247</td>
</tr>
<tr>
<td></td>
<td>Г-2</td>
<td>1,47</td>
<td>4796</td>
</tr>
<tr>
<td></td>
<td>ГИФ</td>
<td>1,71</td>
<td>4535</td>
</tr>
<tr>
<td>0</td>
<td>P25</td>
<td>1,37</td>
<td>5282</td>
</tr>
<tr>
<td></td>
<td>Г-1</td>
<td>1,60</td>
<td>4685</td>
</tr>
<tr>
<td></td>
<td>Г-2</td>
<td>1,67</td>
<td>4831</td>
</tr>
<tr>
<td></td>
<td>ГИФ</td>
<td>1,90</td>
<td>4605</td>
</tr>
<tr>
<td>0</td>
<td>N40P25</td>
<td>1,49</td>
<td>5559</td>
</tr>
<tr>
<td></td>
<td>Г-1</td>
<td>1,74</td>
<td>4910</td>
</tr>
<tr>
<td></td>
<td>Г-2</td>
<td>1,84</td>
<td>4940</td>
</tr>
<tr>
<td></td>
<td>ГИФ</td>
<td>2,19</td>
<td>4483</td>
</tr>
</tbody>
</table>

Совместное использование гербицидов против двудольных и однодольных сорняков, снижая общую засоренность посевов, приводило к увеличению продуктивности культуры, однако не всегда рост урожайности покрывал затраты на проведение защитных мероприятий. Так, при возделывании пшеницы по пару увеличение чистого дохода по отношению к фону применения дикотицида отмечено при проведении глубокой обработки, как с применением удобрений, так и без них — 30-1350 руб./га, при уровне рентабельности 56-81%, и на необработанном фоне с внесением полной дозы удобрений — 60 руб./га при уровне рентабельности 21%. По гороху и овсу увеличение чистого дохода отмечено при внесении удобрений на фоне глубокой обработки — 30-570 руб./га при уровне рентабельности 23-47%.
Таблица 2
Экономическая эффективность технологий возделывания яровой пшеницы по овсу и гороху, 2011-2012 гг.

<table>
<thead>
<tr>
<th>Удобрения</th>
<th>Средства защиты растений</th>
<th>Овес</th>
<th>Горох</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Урожайность, г/га</td>
<td>Себестоимость зерна, руб./т</td>
<td>Чистый доход, руб./т</td>
</tr>
<tr>
<td>Глубокая плоскорезная обработка почвы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0,73</td>
<td>5249</td>
<td>548</td>
</tr>
<tr>
<td>Г-1</td>
<td>0,23</td>
<td>4931</td>
<td>882</td>
</tr>
<tr>
<td>Г-2</td>
<td>0,32</td>
<td>5691</td>
<td>252</td>
</tr>
<tr>
<td>ГИФ</td>
<td>0,88</td>
<td>6073</td>
<td>-64</td>
</tr>
<tr>
<td>0</td>
<td>0,59</td>
<td>8108</td>
<td>-1244</td>
</tr>
<tr>
<td>Г-1</td>
<td>0,77</td>
<td>6319</td>
<td>-400</td>
</tr>
<tr>
<td>Г-2</td>
<td>0,89</td>
<td>6316</td>
<td>-280</td>
</tr>
<tr>
<td>ГИФ</td>
<td>1,15</td>
<td>5499</td>
<td>574</td>
</tr>
<tr>
<td>Без основной обработки почвы</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0,67</td>
<td>7278</td>
<td>-850</td>
</tr>
<tr>
<td>Г-1</td>
<td>0,69</td>
<td>7410</td>
<td>-966</td>
</tr>
<tr>
<td>Г-2</td>
<td>0,69</td>
<td>8182</td>
<td>-1506</td>
</tr>
<tr>
<td>ГИФ</td>
<td>0,79</td>
<td>8040</td>
<td>-1612</td>
</tr>
<tr>
<td>0</td>
<td>0,79</td>
<td>7400</td>
<td>-1108</td>
</tr>
<tr>
<td>Г-1</td>
<td>0,93</td>
<td>6583</td>
<td>-540</td>
</tr>
<tr>
<td>Г-2</td>
<td>0,98</td>
<td>6796</td>
<td>-780</td>
</tr>
<tr>
<td>ГИФ</td>
<td>1,00</td>
<td>7366</td>
<td>-1366</td>
</tr>
<tr>
<td>0</td>
<td>0,74</td>
<td>9330</td>
<td>-2447</td>
</tr>
<tr>
<td>Г-1</td>
<td>0,88</td>
<td>8107</td>
<td>-1843</td>
</tr>
<tr>
<td>Г-2</td>
<td>0,98</td>
<td>7820</td>
<td>-1783</td>
</tr>
<tr>
<td>ГИФ</td>
<td>1,36</td>
<td>6177</td>
<td>-240</td>
</tr>
</tbody>
</table>

Использование в посевах пшеницы по пару инсектицида и фунгицида на фоне гербицидов обеспечило существенный рост урожайности и привело к увеличению чистого дохода на 245-1385 руб./га, и, в основном, сопровождалось увеличением уровня рентабельности производства зерна. В посевах пшеницы после гороха применение инсектицида и фунгицида в основном обеспечило рост чистого дохода по всем обработкам и уровням применения удобрений - 125-905 руб./га. При возделывании пшеницы по овсу положительный эффект от применения инсектицида и фунгицида отмечен при внесении фосфорного удобрения на фоне глубокой обработки почвы – 845 руб./га при уровне рентабельности 9%. Во всех остальных случаях затраты либо не окупались стоимостью прибавки урожая, либо не обеспечили получение дохода.
При возделывании пшеницы после всех предшественников, отказ от проведения глубокой плоскорезной обработки с приводил к снижению урожайности и ухудшению экономических показателей.

Выводы

Наименьшая себестоимость зерна и наибольшая рентабельность производства достигались при возделывании пшеницы на фоне глубокой обработки почвы и применения: по пару — гербицидов, инсектицида и фунгицида (3115 руб./т и 93%), по гороху — гербицида против двудольных (3045 руб./т и 97%), по овсу — N₄₀P₂₅ и гербицидов (4862 руб./т и 23%).

Наибольший чистый доход при возделывании пшеницы достигается на фоне глубокой плоскорезной обработки и применения: по пару и гороху — комплекса средств защиты растений (6290 и 4533 руб./га), по овсу — N₄₀P₂₅ и гербицидов (1576 руб./га).

Возделывание пшеницы в бессменных посевах за отчетный период было экономически нецелесообразным.

УДК 633.11:631.582:631.85(571:15)

Накопление биомассы сортов яровой мягкой пшеницы по различным предшественникам и агрохимическим фонам

Д. В. Часовских, аспирант
ГНУ Алтайский НИИСХ Россельхозакадемии

Повышение продуктивности и устойчивости земледелия неразрывно связано с необходимостью оптимизации свойств почвы и питания растений, в достижении которой важная роль отводится минеральным удобрениям.

Современный прогресс, достигнутый в области растениеводства, способствовал значительному повышению генетической (потенциальной) продуктивности и фактической урожайности сельскохозяйственных культур. В результате повысилась их потребность в питательных веществах, которую почвенный источник, даже в черноземной зоне, уже не в состоянии полностью удовлетворить [1].

Очевидно, что переход к адаптивному растениеводству в XXI столетии будет базироваться на дифференцированном использовании природных, биологических и техногенных ресурсов, в основе которого и лежит познание экологогенетических особенностей формирования потенциальной продуктивности и экологической устойчивости культивируемых видов
и сортов растений. Важнейшая роль при этом принадлежит экзогенному (агротехника) и эндогенному (селекция) регулированию минерального питания, позволяющему обеспечить не только устойчивый рост величины и качества урожая, в том числе в неблагоприятных и даже экстремальных условиях внешней среды, но и ресурсо-энерго-экономичность, природоохранность и рентабельность агроэкосистем [2].

Приобская зона – зона неустойчивого увлажнения, поэтому влага – лимитирующий фактор эффективности производства в нашей зоне, а также это один из самых важных факторов в вопросе рационального применения удобрений. Поэтому изучение и грамотное использование доступных ресурсов влаги - очень важная задача, которая напрямую связана с правильным подбором предшественников и применением удобрений [3].

Одним из важных показателей эффективности применения удобрений является развитие растения во время вегетации. По накоплению биомассы растения можно судить об отзывчивости растений на удобрения, а также прогнозировать будущую урожайность.

Цель исследований - изучить особенности питания новых сортов мягкой яровой пшеницы интенсивного и полуинтенсивного типа, разработать рекомендации по выбору предшественника и оптимальным дозам внесения удобрений.

Метеорологические условия и методика исследований

По количеству осадков, выпавших за сельскохозяйственный год и распределению их по отдельным периодам, условия увлажнения года для большинства полевых культур были неблагоприятными.

Перед посевом в пахотном слое содержание запасов продуктивной влаги составило по пару – 33,9 мм, по пшенице – 32,2 мм. В слое 100 см по пару – 156,3 мм, по пшенице – 111 мм. К концу июля уровень продуктивной влаги по предшественнику яровая пшеница был критическим, в пахотном слое - 0,8 мм, в слое 50 см - 2,6 мм, в слое 100 см - 23,9 мм. По пару показатели были следующие: в пахотном слое – 3,8 мм, в слое 50 см – 10,4 мм, в слое 100 см – 58,1 мм.

По температурному режиму, год был теплее на 0,5°С (2,1°С).

В фазу молочной спелости с опытных делянок были отобраны растительные образцы с площади 0,2 м², далее была определена сухая масса образцов и проведен анализ на содержание азота в растительных образцах по методу Кьельдаля.

Результаты исследований

В фазу молочной спелости с опытных делянок были отобраны растительные образцы с площади 0,2 м², далее была определена сухая масса образцов и проведен анализ на содержание азота в растительных образцах по методу Кьельдаля.
Пар

Рисунок 1 - Накопление биомассы в фазу молочной спелости по пару

По паровому предшественнику наибольшее накопление биомассы наблюдается при внесении дозы удобрений N₃₀P₄₀. Из полученных данных можно сделать вывод, что по паровому предшественнику в условиях острой засухи наименьшей отзывчивостью к вносимым удобрениям характеризуется сорт Алтайская Жница. Сорта Алтайская 110 и Алтайская 75 наиболее отзывчивы к вносимым удобрениям, при этом, если удобрения под них не вносить, они показывают довольно низкий показатель накопления биомассы по сравнению с полуинтенсивным сортом Алтайская Жница.

Пшеница

Рисунок 2- Накопление биомассы в фазу молочной спелости по пшенице

По предшественнику пшеница наибольшим накоплением биомассы характеризовались сорта Алтайская 110 и Алтайская 75. Наибольшую отзывчивость к внесенным удобрениям проявили сорта Алтайская 110 и Сибирский Альянс. Наименьшей отзывчивостью характеризовался сорт Алтайская Жница.

Из полученных данных можно сделать вывод, что наибольшей отзывчивостью к удобрениям, на стадии накопления биомассы, характеризуются
сорта Алтайская 75 и Алтайская 110. Сорт Алтайская жница наименее от-
звывчив к вносимым дозам удобрений.

Рисунок 3- Потребление азота по пару, кг/га

По паровому предшественнику наибольшим потреблением азота ха-
рактеризуются сорта Сибирский Альянс и Алтайская 75. Наибольшая от-
зывчивость на внесенные удобрения наблюдается у сортов Сибирский
Альянс, Алтайская 110, Алтайская 75. Сорт Алтайская жница оказался
наименее отзывчив на вносимые удобрения.

Рисунок 4- Потребление азота по пшенице, кг/га

По предшественнику пшеница наибольшим потреблением азота ха-
рактеризуется сорт Алтайская 110 на варианте с внесением дозы удобре-
ний N₉₀P₄₀. Наибольшую отзывчивость на внесенные удобрения проявили
сорта Сибирский Альянс, Алтайская 110, Алтайская 75. Сорт Алтайская
жница оказался наименее отзывчив.

На основе полученных данных можно сделать вывод, что наиболь-
шую отзывчивость на внесенные удобрения проявили сорта интенсивного
типа — Алтайская 110, Алтайская 75 и Сибирский Альянс. Полуинтенсивный сорт Алтайская жница характеризовался низкой отзывчивостью.

Выводы

В острозасушливый год наибольшей отзывчивостью по накоплению биомассы на внесенные удобрения характеризуются сорта интенсивного типа — Сибирский Альянс, Алтайская 110 и Алтайская 75.

Наибольшим потреблением азота по паровому и зерновому предшественнику также характеризуются сорта интенсивного типа — Сибирский Альянс, Алтайская 110, Алтайская 75.

Сорт полуинтенсивного типа Алтайская Жница менее отзывчив по накоплению биомассы на вносимые удобрения и характеризуется меньшим потреблением азота, чем интенсивные сорта, но в то же время он показывает довольно высокий уровень накопления биомассы по варианту без внесения удобрений, в отличие от интенсивных сортов. Это говорит о том, что с точки зрения экономики, в условиях острой засухи выгодней использовать сорт полуинтенсивного типа Алтайская Жница без применения удобрений.

Список литературы

Результаты оценки сортообразцов пшеницы яровой мягкой, сохраняемой в сибирском генофонде, по числу зерен колоса в условиях лесостепи Приобья

Н.И. Бойко, м.н.с., В.В. Пискарев, к.с.-х.н.
ГНУ СибНИИРС Россельхозакадемии

Урожайность пшеницы непосредственно складывается из двух элементов - числа продуктивных колосьев с единицы площади и массы зерна колоса. Каждый из этих элементов контролируется сложной генетической системой, тесно взаимодействующей с условиями внешней среды. Масса зерна колоса коррелирует с крупностью зерна и числом зерен в колосе [1]. Формирование колоса, его озерненность у сортов и гибридов определяется как их наследственностью, так и комплексом факторов внешней среды [2]. Продуктивность колоса непосредственно связана с числом и массой зерен, формирующихся в колосе. Этот признак контролируется сложной генетической системой, которая тесно взаимодействует с условиями внешней среды в процессе онтогенеза [3].

Цель исследования – выделить источники хозяйственно-ценных признаков пшеницы мягкой яровой, в условиях лесостепи Приобья, для дальнейшего использования в селекционном процессе.

Материал, методика и условия проведения эксперимента

В опыт включены 150 коллекционных сортообразцов пшеницы мягкой яровой, селекции различных научно-исследовательских и селекционных учреждений. Сорта и линии сгруппированы по группам спелости. Посев проводили в 2011 году - 14 мая, 2012 - 12 мая вручную в 2-х кратной повторности по 2 рядка в повторности длинной 1 метр погонный. Предшественник - чистый пар. В течение вегетации проводили фенологические наблюдения и уход за посевами. В фазу восковой спелости растения убирали в снопы и высушивали, после чего проводили структурный анализ, где учитывали элементы продуктивности растения и колоса. Данные обрабатывали статистическими методами [4].

В 2011 году среднесуточная температура воздуха, по данным метеорологической станции п. Огурцово, в мае превышала среднемноголетние значения на 1°С, в июне на 3.2°С, тогда как в июле и августе наблюдался
дефицит тепла. Количество осадков в мае выпало 78, в июне 65, в июле 72, в августе 74% от нормы.

В 2012 году вегетационный период характеризовался превышением среднемесячных температур воздуха среднемноголетнего значения, на фоне недостаточного увлажнения. В мае температура превысила среднемноголетнее значение на 0,4° С, в июне – 4,3°С, июле – 3,1°С, августе - 0,9°С. Количество осадков выпало в мае 34,6, июне 34,6, июле 6,1, августе 100,3% от нормы.

Результаты и обсуждение

Результаты двухфакторного дисперсионного анализа по числу зерен колоса сортов и линий среднеранней и ранней групп спелости, представленные в таблице 1 показывают, что варианса, отражающая генотипическую изменчивость в общем фенотипическом варьировании признака, и варианса, отражающая взаимодействие генотип х год, достоверны с уровнем значимости Р < 0,05. При этом наибольший вклад в общее варьирование числа зерен колоса вносит генотипическая изменчивость (74,7%), наименьший – условия, сложившиеся в разные годы исследований (0,2%).

Таблица 1

<table>
<thead>
<tr>
<th>Источник варьирования</th>
<th>Степень свободы (df)</th>
<th>Средний квадрат (ms)</th>
<th>Критерий Фишера (Фр)</th>
<th>Доля влияния фактора, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общая дисперсия</td>
<td>139</td>
<td>215,5605</td>
<td>-</td>
<td>0,006</td>
</tr>
<tr>
<td>Генотип (A)</td>
<td>34</td>
<td>127,0053</td>
<td>14,373*</td>
<td>74,7</td>
</tr>
<tr>
<td>Год (B)</td>
<td>1</td>
<td>10,1993</td>
<td>1,154</td>
<td>0,2</td>
</tr>
<tr>
<td>Взаимодействие AxB</td>
<td>34</td>
<td>24,4108</td>
<td>2,762*</td>
<td>14,4</td>
</tr>
<tr>
<td>Случайное отклонение</td>
<td>70</td>
<td>8,8367</td>
<td>-</td>
<td>0,7</td>
</tr>
</tbody>
</table>

*Р < 0,05.

Число зерен колоса сортов и линий среднеранней и ранней групп спелости в 2011 году варьировало от 20,1 (Ангара 86) до 43,0 (Росинка 1), в 2012 году от 16,7 (Саратовская 50) до 28,7 (Энита). Среднее число зерен колоса в 2011 году составило 31,0, тогда как в 2012 году 21,4. В целом по среднеранней и ранней группам спелости числом зерен колоса в 2011 году, достоверно выше среднего значения (НСР05 = 3,8) характеризовались 7 сортов (20,0%) – Росинка 1 (43,0), Энита (42,1), Ленинградская 97 (37,2), Устя (37.0), Новосибирская 31 (36,7), Алтайская 65 (35,9) и Новосибирская 15 (35,6 шт.). В 2012 году достоверно выше среднего значения (НСР05 = 4,8) характеризовался 1 сорт (3%) – Энита (28,7), остальные были на
уровне среднего значения ± НСР05. За 2 года исследования по выраженности признака «число зерен колоса», выделились 2 сорта из 35 (6%) (рис. 1) — Росинка 1 (32,5) и Энита (28,7), характеризующиеся достоверным превышением среднего значения признака по группе (НСР05 = 5,9).

Рисунок 1 - Распределение сортов и линий среднеранней и ранней групп спелости по числу зерен колоса, 2011-2012 гг., %.

Результаты двухфакторного дисперсионного анализа по числу зерен колоса сортообразцов среднеспелой группы, представленные в таблице 2 показывают, что варианса, отражающая генотипическую изменчивость в общем фенотипическом варьировании признака, достоверна с уровнем значимости Р < 0,05. Можно отметить, что наибольший вклад в общее варьирование по числу зерен колоса вносит генотипическая изменчивость (79,24%), наименьший — условия, сложившиеся в разные годы исследований (0,02%).

Число зерен колоса сортов и линий среднеспелой группы в 2011 году варьировало от 24,8 (Алтайская 60) до 40,7 (Прохоровка), тогда как в 2012 году от 15,3 (Альбидум 31) до 27,3 (Лада). Среднее число зерен колоса в 2011 году составило 31,6 шт., а в 2012 году составило 20,6. В целом по среднеспелой группе числом зерен колоса в 2011 году, достоверно выше среднего значения (НСР05 = 3,6) характеризовались 16 сортов (15,8%): Прохоровка (40,7), Омская кормовая (39,3) Шортандинка 125 (38,4) Тулеревская (37,9), Аму 65500 (37,6), Баганская 51 (37,5 шт.) и др. В 2012 году
достоверно выше среднего значения (HCP₀₅ = 4,6) характеризовались 2 сорта (2%): Ангарида (25,4) и Лада (27,3).

Таблица 2

Результаты двухфакторного дисперсионного анализа по числу зерен колоса сортов и линий среднеспелой группы, испытанных в 2011–2012 гг.

<table>
<thead>
<tr>
<th>Источник варьирования</th>
<th>Степень свободы (df)</th>
<th>Средний квадрат (ms)</th>
<th>Критерий Фишера (Fф)</th>
<th>Доля влияния фактора, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общая дисперсия</td>
<td>403</td>
<td>47,4063</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Генотип (A)</td>
<td>100</td>
<td>151,3804</td>
<td>9,650*</td>
<td>79,24</td>
</tr>
<tr>
<td>Год (B)</td>
<td>1</td>
<td>3,0741</td>
<td>0,196</td>
<td>0,02</td>
</tr>
<tr>
<td>Взаимодействие АхВ</td>
<td>100</td>
<td>7,9499</td>
<td>0,507</td>
<td>4,16</td>
</tr>
<tr>
<td>Случайное отклонение</td>
<td>202</td>
<td>15,6863</td>
<td>-</td>
<td>16,58</td>
</tr>
</tbody>
</table>

*P < 0,05.

В среднем за 2011-2012 годы число зерен варьировало от 21,2 (Безостоя выполненная) до 32,2 (Лада). Среднее значение составило 26,1. В целом по группе число зерен колоса у всех сортообразцов находилось на уровне среднего значения ± HCP₀₅ (HCP₀₅ = 7,8).

Результаты двухфакторного дисперсионного анализа по числу зерен колоса сортов сортообразцов среднепоздней группы, представленные в таблице 3 показывают, что варианса, отражающая генотипическую изменчивость в общем фенотипическом варьировании признака, достоверна с уровнем значимости P < 0,05. Доля изменчивости, обусловленная генотипическим различием, значительно выше (77,0%), чем доля изменчивости, обусловленная условиями вегетации (0,5%).

Таблица 3

Результаты двухфакторного дисперсионного анализа по числу зерен колоса сортов и линий среднепоздней группы спелости, испытанных в 2011–2012 гг.

<table>
<thead>
<tr>
<th>Источник варьирования</th>
<th>Степень свободы (df)</th>
<th>Средний квадрат (ms)</th>
<th>Критерий Фишера (Fф)</th>
<th>Доля влияния фактора, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Общая дисперсия</td>
<td>55</td>
<td>41,3049</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>Генотип (A)</td>
<td>13</td>
<td>134,6144</td>
<td>8,756*</td>
<td>77,0</td>
</tr>
<tr>
<td>Год (B)</td>
<td>1</td>
<td>10,7842</td>
<td>0,701</td>
<td>0,5</td>
</tr>
<tr>
<td>Взаимодействие АхВ</td>
<td>13</td>
<td>6,1924</td>
<td>0,403</td>
<td>3,5</td>
</tr>
<tr>
<td>Случайное отклонение</td>
<td>28</td>
<td>15,3748</td>
<td>-</td>
<td>19,0</td>
</tr>
</tbody>
</table>

*P < 0,05.
Число зерен колоса сортов и линий среднепоздней группы в 2011 году варьировало от 25,8 (Тулайковская золотистая) до 39,9 (Сибирская 17), в 2012 году от 18,0 (Линия 1141) до 28,8 (Омская 24). Среднее число зерен колоса составило 31,9 шт. (2011 г.), тогда как в 2012 году 22,8. В целом по среднепоздней группе числом зерен колоса, достоверно выше среднего значения (НСР05 = 4,6) характеризовались 2 сорта (14,3%): Омская 24 (38,5) и Сибирская 17 (39,9 шт.) в условиях 2011 г. и 1 сорт (7%) в 2012 году (НСР05 = 5,6): Омская 24 (28,8).

В среднем за 2 года исследования выраженность признака варьирова­ла от 23,4 (Карабалыкская 82) до 33,6 (Омская 24). Среднее число зерен колоса составило 27,3. В целом по среднепоздней группе число зерен ко­лоса у всех сортообразцов находилось на уровне среднего значения ± HCP05 (HCP05 = 8,0).

Выводы

В качестве источников повышения озерненности колоса пшеницы мягкой яровой в условиях лесостепи Приобья можно рекомендовать сортообразцы:
Среднеранние и ранние, выделившиеся по результатам оценки 2011 года – Алтайская 65, Ленинградская 97, Новосибирская 15, Новосибирская 31, Устя; по результатам оценки за 2 года – Росинка 1 и Энита
Среднеспелые, выделившиеся по результатам оценки 2011 года – Аму 65500, Баганская 51, Омская кормовая, Прохоровка, Тулеевская и Шортандинка 125; по результатам оценки 2012 года Ангарида, Лада;
Среднепоздние, выделившиеся по результатам оценки 2011 года – Омская 24 и Сибирская 17.

Список литературы

Адаптивные особенности сортов яровой мягкой пшеницы в условиях Приобской лесостепи Алтайского края

В.С. Валекжанин, к. с.-х. наук,
ГНУ Алтайский НИИСХ Россельхозакадемии

Яровая мягкая пшеница является наиболее распространённой культурой в Алтайском крае, где под неё ежегодно отводится более 2,0 млн. га или 68-70% от площади посева зернового клина [1]. Природно-климатические условия Алтайского края, в основном удовлетворяют биологическим требованиям яровой мягкой пшеницы и позволяют получать экологически оправданный урожай высококачественного зерна. Однако высокая лабильность климатических факторов в местных условиях (часто повторяющиеся летние засухи, короткий безморозный период, дефицит тепла, влаги и т.д.) обусловливает высокую вариабельность урожайности ведущей зерновой культуры в ряду лет, как по отдельным зонам, так и в среднем по краю. Так, за последние 25 лет диапазон её варьирования составил от 6,3 ц/га в 1997 году до 15,7 ц/га в 2009 году [2]. В связи с этим остро стоит вопрос стабилизации сборов зерна пшеницы, который стимулирует поиск повышения адаптивного потенциала у вновь создаваемых сортов. Основные требования, которым должны соответствовать эти сорта - это высокая степень адаптации к условиям предполагаемой зоны их выращивания, высокие показатели качества зерна, а также устойчивость к биотическим и абиотическим стрессам [3-5].

Исходя из этих предпосылок, цель наших исследований заключалась в изучении адаптивных реакций сортов яровой мягкой пшеницы для целенаправленного использования в практической селекции.

Условия, материал и методика исследований

Экспериментальная часть работы выполнена в 2004-2006 гг. и 2010-2012 гг. на опытном поле лаборатории селекции яровой мягкой пшеницы Алтайского НИИСХ, расположенного в Приобской лесостепи Алтайского края.

В целях поиска источников адаптивных признаков нами изучено 18 сортов яровой мягкой пшеницы различных групп спелости, которые наиболее широко распространены в сельскохозяйственном производстве не только в Сибири, но и за её пределами. Посев проводился сейлкой ССФК-7 по двум предшественникам: пар чистый и зерновые (вторая культура после пара). Норма высева 5,0 млн. всхожих зерен на 1 га, площадь делянки 10 м², повторность 3-х кратная. Все учёты и наблюдения выполнены по методике конкурсового сортоиспытания, используемой в Алтайском НИИСХ.

Статистическая обработка экспериментального материала проведена методами дисперсионного и вариационного анализа, изложенных по Б.А. Доспехову [6]. Расчёт параметров экологической пластичности проведен по методикам S.A. Eberhart и W.A. Russell и С. П. Мартынова с помощью пакета компьютерных программ AGROS-1 [7]. В соответствии с методикой Л.А. Животкова с соавторами рассчитана общая и специфическая адаптивная способность исходного набора сортов к благоприятным и лимитированным условиям выращивания [8]. При этом посев по пару в 2004 году, когда зафиксирована максимальная средняя урожайность, использован нами как "благоприятные условия", а посев по пшенице в 2012 году рассматривается в качестве "жестких условий".

Результаты исследований и их обсуждение

В современных селекционных программах первостепенное значение приобретает вопрос о совмещении в конкретном сорте генетически детерминированных свойств его высокой отзывчивости на благоприятные условия выращивания с устойчивостью к отрицательным климатическим и биогенным факторам внешней среды. Закрепление отбором именно этих свойств позволяет генотипу проявлять экологическую пластичность. Урожайность является основным комплексным показателем адаптации генотипа к различным условиям выращивания. В наших исследованиях наблюдались значительные и статистически достоверные различия средней по генотипам урожайности в зависимости от варианта агроэкологических условий.

По данным дисперсионного анализа основной вклад в изменчивость урожайности вносит фактор "годы" - 49,4%, затем фактор "предшественники" - 31,3%. Значительно ниже доля изменчивости, обусловленная сортовыми различиями - 6,7%. Эффекты взаимодействия всех изученных факторов не превышают 2,0%, но они также достоверны. В такой ситуации весьма актуальна работа по созданию сортов, прежде всего, с широкой адаптацией, так как доли влияния агроэкологических факторов свидетельствуют о значительной реакции генотипов на смену условий выращивания, но паряду с этим необходимо учитывать и специфику реагирования отдельных сортов.
В среднем за годы исследований достоверно более высокий урожай зерна сформировали в среднеранней группе: Алтайская 99, Памяти Азизева и Тулеевская (с прибавками к стандарту от 1,8 до 4,7 ц/га); в среднеспелой – Алтайская степная, Саратовская 68 и Дуэт (от 1,7 до 4,1 ц/га) и в среднепоздней – Омская 28 (+1,3 ц/га) (табл.).

В результате расчетов параметров экологической пластичности с применением различных математических подходов установлено, что лучшие по урожайности сорта характеризуются различным спектром адаптивных реакций. Так, к сортам с широкой экологической реакцией относятся: в среднеранней группе - Алтайская 99 и Тулеевская; в среднеспелой – Алтайская степная и Дуэт и в среднепоздней – Омская 28. Наиболее важными основаниями для такой агрекологической классификации являются: коэффициенты регрессии их урожаев близкие к единице (b,=1,00-1,04) и высокие значения стабильности (H. =1,9-13,2). Вместе с тем для этих сортов характерны достоверные относительные прибавки продуктивности (от +3,4 до +30,2%) и более высокие, чем у стандартов, предельные значения её варьирования, как в жестких, так и в благоприятных условиях выращивания (см. табл.). Это свидетельствует о целесообразности их использования в селекции на повышение адаптивного потенциала новых сортов различных групп спелости, сочетающие в своих генотипах свойства устойчивости к неблагоприятным факторам среды с признаками умеренной отзывчивости на улучшение агроклиматического фона.

К сортам с высокой средней урожайностью, как отмечено нами ранее, относятся также Памяти Азизова и Саратовская 68. При этом данные генотипы по совокупности показателей экологической пластичности, в отличие от сортов, проанализированных выше, характеризуются повышенной устойчивостью к стресс-факторам. Из данных таблицы следует, что прирост урожайности этих сортов в лимитированных условиях гораздо выше, чем у соответствующих стандартов при более низких, в сравнении с другими генотипами, значениях коэффициентов вариации (СV=39,9-43,4%). Специфическая реакция Памяти Азизова и Саратовской 68 к неблагоприятным условиям также подтверждается коэффициентами линейной регрессии значительно меньше единице (b,=0,77-0,91), достоверно более высокими относительными прибавками урожайности в жестких средах (+18,6 и +29,7%) и, на уровне экологически пластичных сортов, значениями стабильности (см. табл.).
Таблица
Урожайность и показатели экологической пластичности сортов яровой мягкой пшеницы

<table>
<thead>
<tr>
<th>Сорта</th>
<th>Урожайность, ц/га</th>
<th>Показатели экологической пластичности</th>
<th>Адаптивность по Л.А. Животкову, %</th>
<th>Благоприятные условия</th>
<th>Жесткие условия</th>
<th>b_i</th>
<th>S% (RG)</th>
<th>H_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Среднеранние сорта</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алтайская 98. ст.</td>
<td>18,2</td>
<td>5,6-33,8</td>
<td>45,1</td>
<td>88,0</td>
<td>94,9</td>
<td>0,95</td>
<td>5,70</td>
<td>-8,6</td>
</tr>
<tr>
<td>Алтайская 99</td>
<td>20,0</td>
<td>6,1-40,2</td>
<td>47,4</td>
<td>104,7</td>
<td>103,4</td>
<td>1,02</td>
<td>8,22</td>
<td>1,9</td>
</tr>
<tr>
<td>Новосибирская 29</td>
<td>19,2</td>
<td>4,8-36,7</td>
<td>49,3</td>
<td>95,6</td>
<td>81,4</td>
<td>1,08</td>
<td>7,69</td>
<td>-7,5</td>
</tr>
<tr>
<td>Памяти Азизова</td>
<td>20,8</td>
<td>7,0-38,1</td>
<td>43,4</td>
<td>99,2</td>
<td>118,6</td>
<td>0,91</td>
<td>7,54</td>
<td>5,6</td>
</tr>
<tr>
<td>Тулеевская</td>
<td>22,9</td>
<td>6,2-43,1</td>
<td>44,8</td>
<td>112,2</td>
<td>105,1</td>
<td>1,04</td>
<td>8,67</td>
<td>8,6</td>
</tr>
<tr>
<td>Среднее по группе</td>
<td>20,2</td>
<td>5,9-38,4</td>
<td>-</td>
<td>100,0</td>
<td>100,0</td>
<td>1,00</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>HCP_{0.05}</td>
<td>1,4</td>
<td>-</td>
<td>-</td>
<td>2,4</td>
<td>2,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Среднеспелые сорта</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алтайская 100, ст.</td>
<td>21,5</td>
<td>6,5-43,2</td>
<td>48,0</td>
<td>105,4</td>
<td>101,6</td>
<td>1,07</td>
<td>9,81</td>
<td>-1,9</td>
</tr>
<tr>
<td>Алтайская 50</td>
<td>18,4</td>
<td>7,2-30,3</td>
<td>37,7</td>
<td>73,9</td>
<td>112,5</td>
<td>0,80</td>
<td>11,08</td>
<td>-13,8</td>
</tr>
<tr>
<td>Алтайская степная</td>
<td>23,2</td>
<td>6,8-43,7</td>
<td>44,2</td>
<td>106,6</td>
<td>106,2</td>
<td>1,02</td>
<td>9,81</td>
<td>6,5</td>
</tr>
<tr>
<td>Алтайская 103</td>
<td>21,7</td>
<td>5,5-43,3</td>
<td>47,6</td>
<td>105,6</td>
<td>85,9</td>
<td>1,10</td>
<td>6,13</td>
<td>-3,6</td>
</tr>
<tr>
<td>Алтайская 325</td>
<td>22,1</td>
<td>4,1-41,5</td>
<td>50,8</td>
<td>101,2</td>
<td>64,1</td>
<td>1,15</td>
<td>13,64</td>
<td>1,2</td>
</tr>
<tr>
<td>Саратовская 29</td>
<td>21,8</td>
<td>6,4-35,9</td>
<td>41,3</td>
<td>87,6</td>
<td>100,0</td>
<td>0,93</td>
<td>8,76</td>
<td>-3,2</td>
</tr>
<tr>
<td>Саратовская 68</td>
<td>23,6</td>
<td>8,3-40,3</td>
<td>39,9</td>
<td>98,3</td>
<td>129,7</td>
<td>0,77</td>
<td>5,64</td>
<td>4,1</td>
</tr>
<tr>
<td>Удача</td>
<td>22,4</td>
<td>4,8-43,5</td>
<td>47,4</td>
<td>106,1</td>
<td>75,0</td>
<td>1,12</td>
<td>7,95</td>
<td>-2,5</td>
</tr>
<tr>
<td>Дуэт</td>
<td>25,6</td>
<td>8,1-47,1</td>
<td>42,6</td>
<td>114,9</td>
<td>126,6</td>
<td>1,04</td>
<td>6,98</td>
<td>13,2</td>
</tr>
<tr>
<td>Среднее по группе</td>
<td>22,2</td>
<td>6,4-41,0</td>
<td>-</td>
<td>100,0</td>
<td>100,0</td>
<td>1,00</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>HCP_{0.05}</td>
<td>1,1</td>
<td>-</td>
<td>-</td>
<td>5,6</td>
<td>3,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Среднепоздние сорта</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алтайская 105, ст.</td>
<td>27,0</td>
<td>3,6-49,5</td>
<td>50,7</td>
<td>96,9</td>
<td>83,7</td>
<td>1,02</td>
<td>7,92</td>
<td>1,7</td>
</tr>
<tr>
<td>Апасовка</td>
<td>26,7</td>
<td>3,7-55,2</td>
<td>53,1</td>
<td>108,0</td>
<td>93,0</td>
<td>1,07</td>
<td>7,27</td>
<td>0,2</td>
</tr>
<tr>
<td>Омская 28</td>
<td>28,3</td>
<td>5,6-53,6</td>
<td>47,2</td>
<td>104,9</td>
<td>130,2</td>
<td>1,00</td>
<td>8,53</td>
<td>5,8</td>
</tr>
<tr>
<td>Сибирская 99</td>
<td>24,3</td>
<td>4,2-46,3</td>
<td>49,4</td>
<td>90,6</td>
<td>97,7</td>
<td>0,91</td>
<td>6,31</td>
<td>-7,7</td>
</tr>
<tr>
<td>Среднее по группе</td>
<td>26,6</td>
<td>4,3-51,1</td>
<td>-</td>
<td>100,0</td>
<td>100,0</td>
<td>1,00</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>HCP_{0.05}</td>
<td>1,3</td>
<td>-</td>
<td>-</td>
<td>6,4</td>
<td>3,7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примечание: CV - коэффициент вариации, b_i и S% (RG) - коэффициент регрессии и отклонение от линии регрессии по S.A. Eberhart and W.A. Russell, H_i - индекс стабильности по С.П. Мартынову.

К стрессоустойчивым генотипам, несмотря на их относительно низкую среднюю продуктивность, относятся также Алтайская 50 и Сибирская 99. Этим сортам характерна нестабильность формирования урожайности в
благоприятных условиях и более высокие, чем у стандартов, предельные значения признака в лимитированных средах. Коэффициенты регрессии урожайности Алтайской 50 и Сибирской 99 на градиент индексов условий среды также свидетельствуют об их слабой реакции на улучшение условий выращивания \((b_i=0,80-0,91) \). В плане селекционного использования сортобобразцов степного агроэкотипа с целью повышения устойчивости и стабилизации урожайности в засушливых условиях наибольший практический интерес представляют: Памяти Азиева и Саратовская 68, а также Алтайская 50 и Сибирская 99.

С другой стороны, относительно высокий средний урожай может быть результатом специфической приспособленности к более благоприятным условиям выращивания. К этой категории сортов в наших исследованиях относятся Новосибирская 29 и Апасовка. В соответствующей группе спелости эти сорта имеют максимальные значения коэффициентов вариации \((CV=49,3-53,1\%) \), которые обусловлены, главным образом, резким, относительно стандартов, повышением урожайности в более благоприятных условиях выращивания \((+2,9 \text{ и } +5,7 \text{ ц/га}) \). При использовании регрессионного анализа специфика их реакций также подтверждается более крутым расположением линий регрессии \((b_i=1,07-1,08) \). Указанные особенностии данных сортов могут служить основанием для их использования в качестве источников хорошей отзывчивости на благоприятные условия.

Выводы

В результате комплексной оценки исходного набора сортов яровой мягкой пшеницы по параметрам экологической пластичности выделены перспективные формы с различным спектром экологических реакций, которые следует активно использовать в селекционных программах на повышение общей адаптивности культуры, а также при создании специализированных сортов.

1. В селекционных программах высокоурожайных экологически пластичных сортов рекомендуется использовать сорта Алтайская 99, Тулеевская, Алтайская степная, Дуэт и Омская 28.
2. Потенциальными источниками повышения засухоустойчивости являются: Памяти Азиева, Саратовская 68, Алтайская 50 и Сибирская 99.
3. В качестве перспективного исходного материала в селекции интенсивных сортов целесообразно использовать сорта Новосибирская 29 и Апасовка.

Список литературы

1. Коробейников Н.И. Обоснование направлений селекции и основных параметров моделей сортов яровой мягкой пшеницы для условий лесостепи Алтайского края // Современные проблемы и достижения аграр-

7. Пакет программ статистического и биометрико-генетического анализа в растениеводстве и селекции AGROS, версия 2.08. — Тверь, 1999.

УДК 635.9:631.529.631.527

Новые виды и сорта Spiraea L. для озеленения Алтайского края

Е.Н. Ванюшина, к.б.н.

ГНУ НИИСС Россельхозакадемии

Современный ландшафтный дизайн является одной из динамично развивающихся областей строительства. В формировании облика окружающей среды растения играют основную роль. Незаменимым элементом любых зеленных насаждений являются кустарники, как вечнозеленые, так и листопадные.
На сегодняшний день рынок растений на 70-80% состоит из видов и сортов, завезенных из питомников Голландии, Польши, Германии и других стран. Большую часть этого ассортимента составляют растения ранее не проходившие испытания на устойчивость к суровому климату юга Западной Сибири. Часто широко разрекламированные импортные растения оказываются неприспособленными к природно-климатическим условиям региона интродукции: они гибнут, вымерзают, подвержены болезням. Таким образом, в сложившейся ситуации необходимы строгие научные подходы к решению данной проблемы [1].

В ГНУ НИИСС Россельхозакадемии проводятся планомерные исследования новых видов и сортов, поступающих из европейских питомников. В настоящее время в условиях лесостепи Алтайского края в НИИСС на первичном изучении находятся 14 видов и сортов Spiraea L. из секций Calospira, Chamaedryon, отличающиеся по морфологическим признакам и срокам цветения от ранее рекомендованных видов. Актуально изучение их зимостойкости, ритмов роста и развития, а также степени реализации признаков (окраска и размер цветков, окраска листьев, высота кустов).

Условия, объекты и методика исследований. Климат лесостепной зоны Алтайского края характеризуется частыми ветрами, неравномерным выпадением осадков, низкой температурой воздуха зимой. Вегетационный период длится 163, безморозный 120 дней. За год выпадает 400-500 мм осадков, за вегетационный период — 250-350 мм. Положительными факторами климата являются: сравнительно большая сумма летнего тепла и солнечного сияния, ранний и мощный снежный покров (35-45 см), достаточная влагообеспеченность в июле-августе (115-120 мм).

Объекты изучения: из секции Calospira — 10 сортов S. japonica Sieb. (спирея японская), 1 сорт S. ×bumaIada Burv. (с. Бумальда), S. fritschiana Schneid. (с. Фришиана), S. ×margaritae Zbl. (с. Маргариты); из секции Chamaedryon — 1 сорт S. nipponica Maxim. (с. ниппонская).

Методика изучения: Описание зимних повреждений проводили в период интенсивного роста побегов по методике учета зимних повреждений [2, 3]; фенологические наблюдения проводились согласно методике З.И. Лучник [2]. Статистическую обработку фенофаз проводили по методике Г.Н. Зайцева [4].

Результаты исследований

Зимние повреждения побегов. Все виды и сорта Spiraea L. независимо от суровости зимы во все годы наблюдений имели различные повреждения от 2 до 6 баллов. Наиболее зимостойкими (обмерзали концы однолетних побегов, 2 балла) оказались сорта S. japonica: 'Dvaror' и 'Golden Princess', S. fritshiana, S. nipponica 'Halward’s Silver'; среднезимостойкими (обмерзают однолетние и многолетние ветви, 4 балла) — сорта S. japonica: 'Albiflora', 'County Red', 'Gold Flame', 'Gold Mound', 'Magic Carpet', 'Shiro-
bana'; незимостойкими (обмерзают до уровня почвы, 6 баллов) — сорта S. japonica: 'Macrophylla' и 'Ruberrima', S × bunalda 'Crispa', S × margaritae.

Ритмы сезонного развития. Начало вегетации у видов и сортов Spiraea отмечалось с 21.04±4 (S. japonica 'Golden Princess') по 27.05±19 (S × margaritae). Начало вегетации зависит не только от перезимовки и состояния куста после зимы, но и от индивидуальной потребности таксона в тепле (рисунок).

Зацветание видов и сортов Spiraea проходило с 6.06±5 (S. nipponica 'Halward’s Silver') по 26.07±8 (S × margaritae). Конец цветения наблюдался с 21.06±3 (S. nipponica 'Halward’s Silver') по 28.08±13 (S × margaritae). Продолжительность цветения сортов S. japonica в среднем составляла 23,3±2,3 — 57,3±16 дней, S. fritschiana цветла 33,3±9,4 дня, S. × margaritae — 32,3±3,3 дня, S × bunalda 'Crispa' — более 100 дней, часто до выпадения снега.

Начало окрашивания листьев наблюдалось с 10.09±4 (S. japonica 'Ruberrima') по 29.09±2 (S × bunalda 'Crispa'). Массовое окрашивание листьев проходило в период с 29.09±8 (S. japonica 'Ruberrima') по 13.10±13 (S. japonica 'County Red').

Параметры куста, соцветий и цветка 7-10-летних растений. Внутривидовая изменчивость высоты куста взрослых растений у сортов S. japonica была от 0,25±0,07 до 1,20±0,10 м. Высота S. nipponica 'Halward’s Silver' достигала 0,49±0,08 м, S. fritschiana — 1,12±0,09 м, S × margaritae — 0,92±0,09 м. При незначительных зимних повреждениях S. × bunalda 'Crispa' имела высоту 60 см, а после обмерзания до уровня почвы — 46 см. Таким образом изучаемые виды и сорта были разделенына 3 группы: карликовые, среднерослые и высокорослые (табл. 1).

Наи меньший диаметр куста (до 50 см) имели три сорта S. japonica: 'Shirobana', 'Dvaror' и 'Gold Mound'. Диаметр кроны от 60 до 80 см имели
пять сортов S. japonica: 'County Red', 'Ruberrima', 'Magic Carpet', 'Albiflora' и 'Golden Princess', а также S. × bumlada 'Crispa', S. × margaritae и S. nipponica 'Halward's Silver'.

Таблица 1

Параметры 7–10-летних кустов Spiraea, 2011 г.

<table>
<thead>
<tr>
<th>Вид, сорт</th>
<th>Высота, м</th>
<th>Диаметр, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Карликовые (до 40 см)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. japonica 'Dvaror'</td>
<td>0,25±0,7</td>
<td>0,50±0,05</td>
</tr>
<tr>
<td>S. japonica 'Gold Mound'</td>
<td>0,30±0,1</td>
<td>0,50±0,05</td>
</tr>
<tr>
<td>Среднерослые (40-80 см)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. japonica 'Magic Carpet'</td>
<td>0,46±0,1</td>
<td>0,60±0,05</td>
</tr>
<tr>
<td>S. japonica 'Golden Princess'</td>
<td>0,46±0,1</td>
<td>0,80±0,05</td>
</tr>
<tr>
<td>S. japonica 'Shirobana'</td>
<td>0,48±0,1</td>
<td>0,40±0,05</td>
</tr>
<tr>
<td>S. japonica 'Gold Flame'</td>
<td>0,49±0,1</td>
<td>0,90±0,05</td>
</tr>
<tr>
<td>S. nipponica 'Halward's Silver'</td>
<td>0,49±0,08</td>
<td>0,80±0,05</td>
</tr>
<tr>
<td>S. japonica 'Albiflora'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. × bumlada 'Crispa'</td>
<td>0,53±0,1</td>
<td>0,70±0,05</td>
</tr>
<tr>
<td>S. japonica 'County Red'</td>
<td>0,66±0,1</td>
<td>0,60±0,05</td>
</tr>
<tr>
<td>S. japonica 'Ruberrima'</td>
<td>0,70±0,1</td>
<td>0,60±0,05</td>
</tr>
<tr>
<td>Высокорослые (более 80 см)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. × margaritae</td>
<td>0,92±0,1</td>
<td>0,70±0,05</td>
</tr>
<tr>
<td>S. fritschiana</td>
<td>1,12±0,09</td>
<td>1,10±0,05</td>
</tr>
<tr>
<td>S. japonica 'Macrophylla'</td>
<td>1,20±0,1</td>
<td>1,70±0,05</td>
</tr>
</tbody>
</table>

Наибольший диаметр куста имели S. japonica 'Gold Flame', S. fritschiana и S. japonica 'Macrophylla' – 90, 110 и 170 см соответственно.

Диаметр цветков (табл. 2) сортов S. japonica колебался от 0,47±0,1 ('Davar') до 0,83±0,1 см ('Shirobana'). Окраска цветков, как и у дикого вида, колебалась от белой до темно-бордовой. Цветки S. × margaritae были розовой окраски и имели меньший диаметр, чем в естественных местах обитания – 0,53±0,1 см. У S. × bumlada 'Crispa' цветки темно-розовые и 0,70±0,1 см в диаметре, у S. fritschiana – белые с розовым диском, 0,85±0,1 см, у S. nipponica 'Halward’s Silver' – желтовато-белые, 0,9 см.

Размер соцветия сортов S. japonica колебался от 3,3±0,2×2,3±0,2 ('Dvaror') до 8,9±1,1×5,5±1,3 см ('County Red'). У S. nipponica 'Halward’s Silver' размер соцветия составлял 2,0±0,6×1,85±0,8 см, S. × margaritae – 4,3±0,9×3,2±0,6 см, S. × bumlada 'Crispa' – 5,3±1,1×4,9±0,5 см, S. fritschiana – 9,1±0,9×8,4±1,4 см.

Размеры и окраска листовой пластинки. Длина листьев (см. табл. 2) сортов S. japonica изменялась от 1,8±0,5 до 10,4±0,5 см, а ширина – от 0,8±0,2 до 5,6±0,4 см. Самые маленькие листья у сорта 'Dvaror', самые крупные – у сорта 'Macrophylla'. У восьми сортов форма листа ланцетная с пильчатым краем, одного – с заостренным, одного – с цельным. У S. nipponica 'Halward’s Silver' она продолжалась с 3 зубчиками на конце, длиной 1,6±0,3 и шириной 0,8±0,1 см. Листья S. × bumlada 'Crispa' ланцетные с
пильчатым краем, слегка скрученные, 6,8±0,5 см длиной и 2,7±0,2 см шириной. Листья S. fritschiana — заостренно-эллиптические, 7,6±0,4 см длиной и 3,9±0,3 см шириной. Листья S. ×margaritae ланцетные с пильчатым краем, 8,0±0,5 см длиной и 3,0±0,4 см шириной.

Таблица 2
Морфологические признаки видов и сортов Spiraea, 2009-2011 гг.

<table>
<thead>
<tr>
<th>Вид, сорт</th>
<th>Диаметр, см</th>
<th>Размер листьев, см</th>
<th>Форма листьев</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>соцветия</td>
<td>цветка</td>
<td>длина</td>
</tr>
<tr>
<td>Сорта S. japonica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'Gold Flame'</td>
<td>4,5±0,7 х 3,5±0,3</td>
<td>0,67±0,1</td>
<td>5,6±0,6</td>
</tr>
<tr>
<td>'County Red'</td>
<td>8,9±1,1 х 5,5±1,3</td>
<td>0,77±0,1</td>
<td>5,8±0,2</td>
</tr>
<tr>
<td>'Albitflora'</td>
<td>5,3±0,6 х 3,6±0,4</td>
<td>0,70</td>
<td>6,5±0,1</td>
</tr>
<tr>
<td>'Dvaror'</td>
<td>3,3±0,2 х 2,3±0,2</td>
<td>0,47±0,1</td>
<td>1,8±0,5</td>
</tr>
<tr>
<td>'Gold Mound'</td>
<td>4,8±1,4 х 3,1±0,5</td>
<td>0,63±0,1</td>
<td>4,2±0,5</td>
</tr>
<tr>
<td>'Golden Princess'</td>
<td>5,8±1,4 х 6,1±2,0</td>
<td>0,53±0,1</td>
<td>5,3±1,0</td>
</tr>
<tr>
<td>'Macrophylla'</td>
<td>6,3±1,2 х 3,9±0,9</td>
<td>0,70</td>
<td>10,4±0,5</td>
</tr>
<tr>
<td>'Magic Carpet'</td>
<td>3,5±0,5 х 2,9±0,2</td>
<td>0,57±0,1</td>
<td>4,0±0,2</td>
</tr>
<tr>
<td>'Ruberrima'</td>
<td>4,7±0,2 х 2,8±0,2</td>
<td>0,50±0,1</td>
<td>6,3±0,2</td>
</tr>
<tr>
<td>'Shirobana'</td>
<td>6,0±0,5 х 3,9±0,2</td>
<td>0,83±0,1</td>
<td>5,4±0,5</td>
</tr>
<tr>
<td>Виды и сорта</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. ×humalda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'Crispa'</td>
<td>5,3±1,1 х 4,9±0,5</td>
<td>0,70±0,1</td>
<td>6,8±0,5</td>
</tr>
<tr>
<td>S. ×margaritae</td>
<td>4,3±0,9 х 3,2±0,6</td>
<td>0,53±0,1</td>
<td>8,0±0,5</td>
</tr>
<tr>
<td>S. fritschiana</td>
<td>9,1±0,9 х 8,4±1,4</td>
<td>0,85±0,1</td>
<td>7,6±0,4</td>
</tr>
<tr>
<td>S. × nipponica</td>
<td>2,0±0,6 х 1,8±0,8</td>
<td>0,90</td>
<td>1,6±0,3</td>
</tr>
<tr>
<td>'Halward's Silver'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Среднее</td>
<td>5,3±0,5 х 3,9±0,5</td>
<td>0,67±0,1</td>
<td>5,7±0,6</td>
</tr>
</tbody>
</table>

Окраска листьев у 2 таксонов весной и летом зеленая, осенью фиолетовая; у 2 — зеленая, желто-оранжевая; у 2 — желто-зеленая, малиново-розовая; у 4 — красно-малиновая весной, зеленая летом и малиново-бордовая осенью; у 2 — малиново-бордовая весной и осенью, зеленая с красным краем летом; у 1 — весной медно-оранжевая, летом зеленов-коричневая, летом темно-зеленая и осенью темно-бордовая с желтыми прожилками.

Выводы

1. Все виды и сорта Spiraea L. во все зимы имеют различные повреждения однолетних побегов и многолетних ветвей. Однако в течение вегетационного периода восстанавливаются до размеров, характерных для каждого таксона и в этот же год цветут.

2. Вегетация таксонов Spiraea L. начинается с конца апреля и длится до середины октября (у некоторых сортов цветение продолжается до выпадения снега). Таким образом сочетая различные виды и сорта при посадке можно добиться непрерывного декоративного эффекта.

73
3. По параметрам взрослых растений изучаемые виды и сорта были разделены на: карликовые (до 40 см), среднерослые (40-80 см) и высоко­рослые (более 80 см) с размерами соцветий от 2 до 9,1 см и окраской цвет­ков от белой до темно-бордовой и малиновой.

4. Размеры листовой пластинки видов и сортов Spiraea L. составляют от 1,6×0,8 см до 10,4×5,6 см. Листья также имеют различную форму и окраску, последняя меняется у некоторых сортов 2-3 раза за сезон.

Список литературы

УДК: 631.151.2: 633.15

Кукуруза на силос и зерно на севере Казахстана

Гилевич С.И., к.с.-х.наук
Костанайский НИИ сельского хозяйства, РК
E-mail: gilevichsi@mail.ru

Одной из основных задач, стоящих перед сельским хозяйством Казах­стана, является наращивание производства зерна и кормов для животно­водства. Без крепкой и надёжной кормовой базы невозможно получить от сельскохозяйственных животных максимальную продуктивность. В этом плане кукуруза имеет большое практическое значение, как одна из пер­спективных и наиболее урожайных кормовых культур.

По кормовым достоинствам кукуруза не имеет себе равных среди других кормовых культур. Она даёт прекрасное фуражное зерно, исключи­тельной ценности силос и зелёный корм. Вот почему эта культура так важна для развития молочного животноводства, овцеводства, свиновод­ства и птицеводства. С расширением посевов кукурузы эти отрасли жи­ вотноводства получат прочную, устойчивую и высокоценную кормовую базу.
Кукуруза является важным резервом диверсификации зернового производства, повышения его стабильности, который на севере Казахстана пока не используется. Она имеет мощную корневую систему, благодаря которой может использовать влагу с глубины до 2,5 м. К тому же эта культура продуктивно использует осадки второй половины лета, которые на севере Казахстана бывают чаще, чем в первой половине лета.

В Костанайском НИИСХ урожай сухого зерна кукурузы составил (в среднем за 2009-2012гг.) 34,3 ц/га, а выход продукции в денежном выражении – 233,2 тыс. тг./га, или в 2,7 раза больше, чем у яровой пшеницы. В условиях сильной засухи 2012 года получено по 47,9 ц/га зерна кукурузы, что в 2,7 раза выше, чем у другой зернофуражной культуры – ячменя (17,5 ц/га). Урожай зелёной (силосной) массы кукурузы с початками восковой спелости зерна в среднем за 4 года составил 246,0 ц/га, в том числе в 2012 году – 247, Кормовая ценность силоса, приготовленного из такой кукурузы, достигает 0,29 – 0,32 к.е. в кг корма (при обычных 0,16).

Стоимость выращенной продукции (в национальной валюте - тенге) в среднем за 4 года (2009-2012) составила: при возделывании кукурузы на силос – 150 тыс. тг./га, а при возделывании на зерно – 235,3 тыс. тг./га, это в 2,0 – 3,2 раза больше, чем у ячменя (табл. 1).

Таблица 1
Урожай полевых культур и стоимость произведённой продукции в различные по климатическим условиям годы

<table>
<thead>
<tr>
<th>Культура</th>
<th>Урожай зерна и зелёной массы по годам исследований, ц/га</th>
<th>Стоимость продукции, тыс. тг/га</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>В среднем за 2009-2012 г.</td>
<td>В т.ч в засушливом 2012 г.</td>
</tr>
<tr>
<td>Ячмень, 3 КПП</td>
<td>21,0</td>
<td>17,5</td>
</tr>
<tr>
<td>Овес, 3 КПП</td>
<td>20,7</td>
<td>13,1</td>
</tr>
<tr>
<td>Кукуруза на зерно, 3 КПП</td>
<td>34,3</td>
<td>47,9</td>
</tr>
<tr>
<td>Кукуруза на силос</td>
<td>246</td>
<td>247</td>
</tr>
</tbody>
</table>

Для получения высоких и стабильных урожаев кукурузы очень важно фитосанитарное состояние её посевов. В засушливых условиях при внедрении влагосберегающих технологий, первостепенное значение приобретает борьба с сорной растительностью. Непродуктивный расход влаги сорняками должен быть сведен к минимуму. Это достигается активным применением современных гербицидов общего или узкоспециализирован-
ного действия. При этом наибольший эффект в борьбе с сорняками достигается в севообороте, где химические обработки могут сочетаться с агротехническими приемами. Подтверждением сказанному могу служить результаты наших исследований, проведённых в первой половине 90-х годов при возделывании кукурузы по зерновой технологии. Тогда, наряду с другими приёмами новой технологии, мы применили почвенные гербициды Эрадикан и Алирокс с дозировкой 7,0 л/га.

Применение почвенных гербицидов позволило снизить засорённость посевов кукурузы в 3-4 раза и увеличить урожай зелёной массы с початками восковой спелости почти до 300 ц/га, что составило 175 % к урожайности без почвенных гербицидов (табл. 2).

Таблица 2
Засоренность и урожай кукурузы и последующих посевов яровой пшеницы в зависимости от технологии возделывания

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Количество сорняков перед уборкой, шт/м²</td>
<td>Урожай основной продукции, ц/га</td>
</tr>
<tr>
<td>Пшеница по пару</td>
<td>18,5</td>
<td>16,5</td>
</tr>
<tr>
<td>Пшеница после кукурузы</td>
<td>59,1</td>
<td>11,7</td>
</tr>
<tr>
<td>Кукуруза по зерновым</td>
<td>131,2</td>
<td>170,6</td>
</tr>
</tbody>
</table>

Проведённый приём позволил улучшить кукурузу как предшественник яровой пшеницы. Посевы пшеницы после кукурузы были такими же чистыми как по пару и не уступали последнему по урожаю зерна.

Введение в зернопаропропашной 7-польный севооборот посевов кукурузы на зерно, наряду с другой высокопродуктивной зерновой культурой — озимой пшеницей, позволило нам увеличить урожайность зерновых в с 14,1 до 23,1 ц/га, или в 1,6 раза. При этом урожай сухого зерна кукурузы в среднем за 5 лет (1991-1995) достиг 43,0 ц/га (табл. 3).
Однако, почвенные гербициды Эрадикан и Алирокс применялись по фону вспашки и требовали немедленной заделки в почву, что не приемлемо в настоящее время при внедрении нулевой системы обработки почвы. Поэтому появление нового почвенного гербицида МайсТер Пауэр фирмы Bayer Crop Science оказалось как нельзя кстати.

Таблица 3

Урожайность сельскохозяйственных культур в зернопаропропашном севообороте с элементами диверсификации растениеводства (среднее за 1991-1995 гг.)

<table>
<thead>
<tr>
<th>№ поля</th>
<th>Чередование культур</th>
<th>Урожай основной продукции, ц/га</th>
<th>№ поля</th>
<th>Чередование культур</th>
<th>Урожай основной продукции, ц/га</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Пар</td>
<td>-</td>
<td>1</td>
<td>Пар</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Пшеница яровая</td>
<td>12,7</td>
<td>2</td>
<td>Пшеница озимая</td>
<td>27,7</td>
</tr>
<tr>
<td>3</td>
<td>Просо</td>
<td>16,0</td>
<td>3</td>
<td>Просо</td>
<td>16,0</td>
</tr>
<tr>
<td>4</td>
<td>Кукуруза на силос</td>
<td>298,0</td>
<td>4</td>
<td>Кукуруза на зерно</td>
<td>43,0</td>
</tr>
<tr>
<td>5</td>
<td>Пшеница яровая</td>
<td>12,6</td>
<td>5</td>
<td>Пшеница яровая</td>
<td>12,9</td>
</tr>
<tr>
<td>6</td>
<td>Ячмень</td>
<td>15,2</td>
<td>6</td>
<td>Ячмень</td>
<td>16,3</td>
</tr>
<tr>
<td>7</td>
<td>Mn. травы</td>
<td>42,7</td>
<td>7</td>
<td>Mn. травы</td>
<td>42,7</td>
</tr>
<tr>
<td></td>
<td>Средний урожай</td>
<td>14,1</td>
<td></td>
<td>Средний урожай</td>
<td>23,1</td>
</tr>
</tbody>
</table>

Гербицид МайсТер Пауэр контролирует однолетние и многолетние злаковые и двудольные сорные растения, обладает почвенным экраном и работает против последующих всходов сорняков. Хорошо контролирует и злостные сорняки, такие как овсяг, пырей, осоты, вьюнок, молочай прутьевидный и другие. Применяется в фазу 2-6 листьев с нормой расхода 1-1,5 л/га. Мы обработали посевы кукурузы в фазе 5-6 листьев гербицидом МайсТер Пауэр в дозе 1,2 л/га совместно с прилепателем «Ракабинол» в дозе 0,5 л/га.

Учёт засорённости посевов кукурузы в фазу полных всходов показал преимущественную эффективность в борьбе с сорняками приёма предпосевной культивации. На это указывает полное отсутствие многолетней сорной растительности на данном варианте и меньшее по сравнению с химической предпосевной обработкой (Ураган-форте, 2 л/га) количество однолетних сорняков - 24,0 шт./м² (табл. 4).

На варианте с химической предпосевной подготовкой поля общее количество сорняков составило 31,0 в том числе многолетних - 0,8 шт./м². Однолетние сорняки в посевах кукурузы были представлены в основном просом куриным, щирицей и кураем варианте с применением гербицида –
просо куриное. Из многолетней сорной растительности встречался вьюнок полевой. Сырая масса сорняков на варианте с химической предпосевной обработкой также превосходила вариант с культивацией — практически в 4 раза (16,2 и 4,1 шт./м², соответственно).

Таблица 4
Засорённость посевов кукурузы в фазу полных всходов в зависимости от приёмов предпосевной обработки, 2012 год

<table>
<thead>
<tr>
<th>Предпосевная подготовка поля</th>
<th>Засорённость, шт./м²</th>
<th>Сырая масса сорняков, г/м²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Всего</td>
<td>в том числе однолетних</td>
</tr>
<tr>
<td>Культивация</td>
<td>24</td>
<td>24,0</td>
</tr>
<tr>
<td>Гербицидная обработка</td>
<td>31</td>
<td>30,3</td>
</tr>
</tbody>
</table>

Применение гербицида МайсТер Пауэр совместно с прилепателем «Ракабинол» (0,5 л/га) в фазе 5-6 листьев оказало благотворное влияние на чистоту посевов кукурузы от сорняков ко времени уборки. Общая засорённость на варианте с предпосевной культивацией снизилась с 39,8 до 16,3 шт./м², то есть в 2,4 раза, а число многолетних сорняков уменьшилось с 1,8 до 0,5 шт./м², или в 3,6 раза.

Таблица 5
Засорённость посевов кукурузы по фону предпосевной культивации перед уборкой в зависимости от способов ухода

<table>
<thead>
<tr>
<th>Вариант ухода за посевами</th>
<th>Засорённость, шт./м²</th>
<th>Сырая масса сорняков, г/м²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Всего</td>
<td>в т.ч. многолетних</td>
</tr>
<tr>
<td>Без почвенного гербицида</td>
<td>39,8</td>
<td>1,8</td>
</tr>
<tr>
<td>МайсТер Пауэр в фазу 5-6 листьев</td>
<td>16,3</td>
<td>0,5</td>
</tr>
</tbody>
</table>

На варианте с химической предпосевной к концу лета произошло снижение засорённости с 37,4 до 23,3 шт./м², то есть в 1,6 раза, а количество многолетних сорняков не изменилось (0,3 шт./м).
Таблица 6

Засорённость посевов кукурузы по фону предпосевной гербицидной обработки перед уборкой в зависимости от способов ухода

<table>
<thead>
<tr>
<th>Вариант ухода за посевами</th>
<th>Засорённость, шт./м²</th>
<th>Сырая масса сорняков, г/м²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Всего</td>
<td>в т.ч. многолетних</td>
</tr>
<tr>
<td>Без почвенного гербицида</td>
<td>37,4</td>
<td>0,3</td>
</tr>
<tr>
<td>МайсТер Пауэр в фазу 5-6 листьев</td>
<td>23,3</td>
<td>0,3</td>
</tr>
</tbody>
</table>

Применение гербицида МайсТер Пауэр благоприятно сказалось на повышении урожайности зелёной массы кукурузы на обеих фонах предпосевной подготовки поля. Так на фоне предпосевной культивации прибавка урожая зелёной массы кукурузы от применения гербицида МайсТер Пауэр составила 40,2 ц/га, или 23,1 % к контролю, при урожайности на контроле 174,3 ц/га. На варианте предпосевной гербицидной обработки поля эффективность гербицида МайсТер Пауэр была ещё выше. Прибавка урожая здесь составила 94,4 ц/га, или 64,7 % к контролю, при урожае на контроле 145,9 ц/га (таблица 7).

Таблица 7

Урожай зелёной массы кукурузы с початками восковой спелости зерна в зависимости от приёмов по уходу за посевами

<table>
<thead>
<tr>
<th>Предпосевная подготовка поля</th>
<th>Урожай зелёной массы, ц/га + - от контроля</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Контроль, без почвенного гербицида</td>
</tr>
<tr>
<td>Культivation на гл. 7-8 см</td>
<td>174,3</td>
</tr>
<tr>
<td>Гербицид, Ураган Форте, 2 л/га</td>
<td>145,9</td>
</tr>
</tbody>
</table>

В условиях засушливого лета 2012 года с осадками во вторую половину вегетации получен довольно высокий урожай сухого зерна кукурузы. Применение по вегетации гербицида МайсТер Пауэр на фоне предпосевной культивации позволило получить 48,0 ц/га зерна кукурузы. Прибавка к контролю (без почвенного гербицида) здесь не высокая – 3,8 ц/га, или 8,6 %. Очень высокая эффективность от применения гербицида МайсТер Пауэр получена на фоне предпосевной гербицидной обработки поля. Урожай сухого зерна кукурузы здесь достиг 67,6 ц/га и увеличился в 2 раза по сравнению с контролем (32,2 ц/га, таблица 8).
Урожай сухого зерна кукурузы в зависимости от приёмов по уходу за посевами

<table>
<thead>
<tr>
<th>Предпосевная подготовка поля</th>
<th>Урожай сухого зерна, ц/га</th>
<th>+ - от контроля</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Контроль, без почвенного гербицида</td>
<td>МайсТер Пауэр, 1,0 л/га</td>
</tr>
<tr>
<td>Культивация на гл. 7-8 см</td>
<td>44,2</td>
<td>48,0</td>
</tr>
<tr>
<td>Гербицид, Ураган Форте, 2 л/га</td>
<td>32,2</td>
<td>67,6</td>
</tr>
</tbody>
</table>

Заключение

Начавшийся в последние годы в АПК Казахстана процесс восстановления животноводства, безусловно, потребует увеличения посевных площадей под интенсивными кормовыми культурами, к числу которых относится кукуруза. Совершенствование технологии возделывания кукурузы в направлении ресурсосбережения способствовало бы повышению эффективности производства кормов.

Расширение посевов кукурузы следует рассматривать как фактор биологизации севооборотов, приём, обеспечивающий продуктивное использование почвенно-климатического потенциала региона и стабильность производства сельскохозяйственной продукции.

УДК 633. 853. 494: 631.527

Сравнительная оценка продуктивности сибирских сортов ярового рапса

В. П. Данилов, к. с.-х. наук, А. А. Штрауб, к.с.-х. наук, О. М. Поцелуев, аспирант

ГНУ СибНИИ кормов Россельхозакадемии

В сибирском регионе имеются все предпосылки для возделывания рапса на больших площадях и получения больших объёмов семян для их бесперебойной переработки в течение года [1, 2].

Одним из важнейших аспектов технологии возделывания ярового рапса, как и любой другой культуры, является выбор сорта. От правильно го выбора зависит объем затрат и, соответственно, экономическая эффективность хозяйственной деятельности. Таким образом, важно правильно выбрать сорт, обладающий совокупностью признаков, способствующих
наиболее полной реализации его потенциальных возможностей в условиях зоны его возделывания.

В настоящее время существует много сортов 00-типа, из которых получили широкое распространение в Сибирском регионе: СибНИИК 198, СибНИИК 21, АНИИЗиС 1, АНИИЗиС 2, Надёжный 92, Дубравинский скороспелый, АНИИСХ 4, Юбилейный, Радикал и Русич, Старт, Фрегат. Все сорта сибирского экотипа [3].

Для выявления сорта, обладающего наиболее высокими показателями кормовой и семенной продуктивности, на Центральной экспериментальной базе СибНИИ кормов были проведены исследования по сравнительной оценке основных сортов ярового рапса. Научно-экспериментальная база расположена в лесостепи Приобья, относящейся к Западно-Сибирскому региону лесостепной зоны страны.

Почва опытного участка зональная - чернозем выщелоченный, среднесуглинистый. По содержанию гумуса (5,55-6,36% в слое 0-40 см), почва относится к среднеобеспеченным. Содержание подвижных форм азота подвержено динамике и характеризуется от очень низкого до высокого. Реакция почвенного раствора близка к нейтральной.

Климат зоны континентальный, с относительно коротким и умеренно-теплым летом и продолжительно-холодной зимой. Увлажнение в средние по осадкам годы несколько недостаточное и составляет 386 мм, из них 254 - в теплый период года (апрель-сентябрь). За период активной вегетации сумма положительных температур выше +10° С составляет 1880° С, с отклонениями по годам от 1500 до 2250°.

Исследования проводились в 2006-2012 гг. Вегетационные периоды в годы проведения исследований были достаточно разнообразны, от крайне засушливых (2012 г.) до увлажнённых (2009 г.). Предшественник — пар. Агротехника в опыте — зональная. Для борьбы с сорными растениями и вредителями использовались пестициды. Посев проводился весной (2-я декада мая) сейлкой СН-16 обычным рядовым способом через 15 см с нормой высева 2,5 млн./га. Определение урожайности зелёной массы и семян проводилось в фазы окончания цветения и побурения 70% стручков на 1/2 площади каждой делянки комбайнами Е-281, Сампо 130, Сампо 500 и Сампо «Ростов». В течение вегетации проводились фенологические наблюдения по фазам развития растений, определение содержания питательных веществ в почве, учёт урожая зелёной массы и семян.

Результаты учёта семенной продуктивности сортов ярового рапса показали, что наибольшую урожайность семян в 2006 г. обеспечили сорта алтайской селекции АНИИЗиС 1 и АНИИЗиС 2 – 22,2 и 22,6 ц/га в пересчёте на стандартную влажность и 100% чистоту (рисунок). Учёт урожая зелёной массы проведённый 14 августа, также показал преимущество сорта АНИИЗиС 1 – 51,0 ц/га абсолютно сухой. Несколько уступили ему по
урожайности Надёжный 92 (разница в урожайности в пределах ошибки опыта) и АНИИЗиС 2 – 50,5 и 41,0 ц/га сухой массы.

В 2007 г. урожайность семян всех сортов была намного ниже из-за неблагоприятных метеоусловий в период интенсивного роста и составила по опыту от 5,5 до 10,1 ц/га. Наиболее урожайными, как и в 2006 г., были сорта алтайской селекции – АНИИЗиС 2 и АНИИЗиС 1 – 10,1 и 9,1 ц/га. Наиболее урожайными, в отношении зеленой массы, из сибирских сортов был СибНИИК 198 – 32,0 ц/га абсолютно сухой массы. Далее в порядке убывания урожайности: Надёжный 92, АНИИЗиС 2, СибНИИК 21 и АНИИЗиС 1.

Урожайность семян всех сортов в 2008 г. из-за недостатка продуктивной почвенной влаги и осадков в период формирования семян также была низкой и составила 4,8-7,6 ц/га по опыту. Наиболее продуктивные: Надёжный 92 и АНИИЗиС 1 – 7,6 и 7,5 ц/га. В условиях вегетационного периода наибольшей кормовой продуктивностью отличались АНИИЗиС 2 (27,5 ц/га абсолютно сухой массы) и впервые введённый в схему опыта Дубравинский скороспелый (24,7 ц/га).

В 2009 г. получен максимальный урожай семян сортов за все годы исследований. Наиболее урожайными были СибНИИК 21 (36,6 ц/га), АНИИСХ 4 (33,4 ц/га), перспективные сортообразцы № 125 и 198 (32,7 и 31,0 ц/га). Наиболее продуктивными по сбору кормовой массы были сорта АНИИЗиС 1 (96,9 ц/га абсолютно сухой массы), Дубравинский скороспелый (90,1 ц/га) и введённые в схему сорта омской селекции – Юбилейный, Радикал и Русич (92,2; 89,4 и 85,2 ц/га).

В 2010 г. результаты учёта семенной продуктивности показали, что наибольшую урожайность семян обеспечил среднеспелый сорт СибНИИК 21 – 22,9 ц/га, далее, в порядке убывания, СибНИИК 198 (19,4 ц/га), сортообразцы № 198 (17,6 ц/га) и № 125 (16,7 ц/га). По итогам учёта урожайности кормовой массы выделились: АНИИЗИС 2 (61,4 ц/га), АНИИСХ 4 (56,6 ц/га) и Радикал (51,9 ц/га).

Лучшие сорта по урожайности семян и зеленой массы в 2011 г. - СибНИИК 21 и АНИИЗиС 2, обеспечившие урожайность абсолютно сухого вещества 68,03 и 58,61 ц/га, семян соответственно 21,50 и 21,88 ц/га.

В засушливых условиях 2012 г. лучшие показатели семенной продуктивности были обеспечены вариантами с сортами – АНИИЗиС 1 и АНИИЗиС 2, обеспечившие урожайность 9,97 и 9,18 ц/га соответственно. Также следует отметить сорта СибНИИК 21 и Надежный 92, обеспечившие математически достоверную прибавку, по сравнению с контролем – 9,66 и 9,65 ц/га. По результатам учёта кормовой продуктивности в 2012 г. лучшими сортами по урожайности зеленой массы стали – АНИИЗиС 1, АНИИЗиС 2 и АНИИСХ 4, обеспечившие урожайность абсолютно сухого вещества 30,5, 28,6 и 31,3 ц/га соответственно.
Урожайность сортов ярового рапса сибирского экотипа, 2006-2012 гг.
Таким образом, учитывая средние многолетние данные по закладкам опыта и наибольшие показатели урожайности семян в отдельные годы, можно констатировать, что лучшую продуктивность семян обеспечил сорт СибНИИК 21. Стоит также отметить достаточно хорошие показатели сорта АНИИЗиС 2, отличившийся в отдельные годы достаточно хорошей прибавкой урожая семян. В среднем за семь лет семенная урожайность этого сорта ниже, чем у СибНИИК 21.

Таким образом, лучшая семенная продуктивность ярового рапса в условиях лесостепной зоны Западной Сибири установлена у сорта селекции СибНИИ кормов СибНИИК 21, составившая 17,1 ц/га в среднем за 2006-2012 гг.

Наибольшая прибавка урожая зеленой массы в среднем за вегетационные периоды 2006-2012 гг. обеспечена сортами Алтайского НИИСХ АНИИЗиС 1, АНИИЗиС 2 и АНИИСХ 4, средняя урожайность которых, составила 45,6; 45,6 и 48,4 ц/га абсолютно сухого вещества соответственно.

Список литературы

УДК 631.8

Влияние гуминового препарата с кальцием на урожайность яровой пшеницы и свойства серой лесной почвы

Т.А. Жирова, студентка 5 курса БИ ТГУ,
А.В. Кравец, с.н.с.

СибНИИСХиТ Россельхозакадемии

Большой интерес к гуминовым веществам определяется их повсеместной распространенностью в природе и важнейшими биосферными функциями. Гуминовые вещества обладают свойствами адаптогенов, повышают сопротивляемость сельскохозяйственных культур к неблагоприятным почвенно-климатическим условиям и болезням, позволяют повы-
сить урожайность сельскохозяйственных культур. Необходимость растениям кальция подтверждена многими исследованиями. Кальций необходим для нормального роста и развития надземных органов и корней растений. Потребность в нём проявляется ещё в фазе прорастания, а так же в течение всего периода активного роста. Кальций принимает участие в поддержании структуры хромосом, рибосом и митохондрий [1]. В связи с этим актуальным является изучение ростостимулирующей активности препаратов на основе физиологически активных гуминовых кислот и биогенного элемента — кальция.

Целью данной работы является изучить влияние гуминового препарата с кальцием на рост и развитие яровой пшеницы и свойства серой лесной почвы в полевом опыте.

Новый стимулятор роста растений — гуминовый препарат с кальцием, получен смешиванием Гумостима (ТУ 0392-030-00493929-06) и раствора хлорида кальция в эквивалентных количествах [2]. Препарат в жидкой форме, темно-коричневого цвета со специфическим запахом, концентрация измеряется в % гуминовых кислот.

Полевой опыт на серой лесной почве стационара Лучаново на яровой пшенице сорта Иргина на минеральном фоне (Кемира N₂₀P₃₀K₃₀) заложили и провели по методике Доспехова Б.А. [3]. Повторность опытов 3-кратная, размещение вариантов систематическое, площадь делянок 40 м², учетная — 32 м². Препарат применялся для предпосевной обработки семян пшеницы (10 л рабочего раствора на 1 т семян). Почва опытного участка рНсол. 4,88, гидролитическая кислотность 7,59 мг-экв/100 г сухой почвы, гумус 5,7%.

Схема полевого опыта включала следующие варианты: 1. Контроль (без обработки); 2. Гуминовый препарат с Са 0,01%; 3. Гуминовый препарат с Са 0,001%.

В течение вегетации измеряли биометрические показатели, содержание зеленых пигментов, структуру урожая и урожайность, количество пораженных корневыми гнилями растений, содержание в почве кальция, магния. Полученные данные обрабатывали методом дисперсионного анализа с помощью пакета прикладных программ Snedekor [4]. В таблицах данные представлены в виде среднего арифметического из 3-х биологических повторностей. Вегетационный период 2011 год характеризуется в целом как умеренно теплый влажный.

Измеренные в фазу цветения биометрические показатели растений пшеницы (табл.1) выявили различия в высоте растений. Если в контрольном варианте высота растений составила 72,23 см, то применение гуминового препарата с Са (0,01%) способствовало увеличению стебля до 79,83 см. Использование препарата более низкой концентрации существенного влияния на высоту растения не оказалось. Среднее количество листьев увеличилось при использовании гуминового препарата с Са в концентра-
ции 0,01%. Кроме того, гуминовый препарат с Ca в обеих концентрациях увеличил площадь одного листа на 10-23%.

Таблица 1

Биометрические показатели пшеницы в фазу цветения

<table>
<thead>
<tr>
<th>Вариант опыта</th>
<th>Высота растения, см</th>
<th>Число стеблей</th>
<th>Среднее количество листьев</th>
<th>Площадь одного листа, см²</th>
<th>Сухая масса 10 растений, г</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>72,23</td>
<td>1,60</td>
<td>3,03</td>
<td>5,56</td>
<td>6,25</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,01%</td>
<td>79,83</td>
<td>1,10</td>
<td>3,13</td>
<td>6,85</td>
<td>9,59</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,001%</td>
<td>71,27</td>
<td>1,23</td>
<td>2,96</td>
<td>6,11</td>
<td>6,98</td>
</tr>
<tr>
<td>НСР₀⁵</td>
<td>8,69</td>
<td>0,29</td>
<td>0,88</td>
<td>1,58</td>
<td>4,66</td>
</tr>
</tbody>
</table>

Измерение содержания зеленых пигментов во флаговом листе пшеницы в ту же фазу (табл. 2) показало, что гуминовый препарат с Ca в двух концентрациях увеличил содержание хлорофилла a, b и суммы хлорофиллов по сравнению с контролем.

В таблице 3 представлены данные структуры урожая разных вариантов опыта. Количество колосков в колосе, количество зерен в колосе на одно растение, масса 1000 зерен по сравнению с контролем увеличилось в вариантах с гуминовым препаратом с Ca в двух концентрациях. Благодаря этим изменениям повысилась урожайность в опытных вариантах на 16-19%. Содержание белка и клейковины в зерне нового урожая в опытных вариантах были на уровне контроля. Но из-за увеличения урожайности, увеличился валовый сбор белка на 15-16%.

Таблица 2

Влияние гуминового стимулятора с кальцием на содержание зеленых пигментов во флаговом листе пшеницы(13.07 фаза цветения), мкг/г сухой массы

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Хлорофилл a</th>
<th>Хлорофилл b</th>
<th>Σa + b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>1376</td>
<td>381</td>
<td>1751</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,01%</td>
<td>1418</td>
<td>399</td>
<td>1817</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,001%</td>
<td>1526</td>
<td>412</td>
<td>1938</td>
</tr>
<tr>
<td>НСР₀⁵</td>
<td>447</td>
<td>129</td>
<td>573</td>
</tr>
</tbody>
</table>
Таблица 3

Структура урожая, урожайность пшеницы и сбор белка в полевом опыте с гуминовым препаратом с Ca

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Кол-во колосков в колосе, шт</th>
<th>Кол-во зерен в колосе на 1 растение, шт</th>
<th>Масса 1000 зерен, г</th>
<th>Урожайность, ц/га</th>
<th>Сбор белка, кг/га</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>8,94</td>
<td>13,18</td>
<td>33,85</td>
<td>15,89</td>
<td>255,0</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,01%</td>
<td>9,69</td>
<td>16,64</td>
<td>34,01</td>
<td>18,46</td>
<td>294,0</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,001%</td>
<td>9,60</td>
<td>16,65</td>
<td>35,14</td>
<td>18,94</td>
<td>297,7</td>
</tr>
<tr>
<td>НСР0,5</td>
<td>2,18</td>
<td>5,70</td>
<td>2,23</td>
<td>3,68</td>
<td>29,3</td>
</tr>
</tbody>
</table>

В таблице 4 представлены данные по содержанию Ca и Mg в почве. Отбор почвы в 1 срок показал достоверно большие количества кальция в почве опытных вариантов. При этом количество больных растений в опытных вариантах находились на уровне контроля (табл.5). Отбор почвенных образцов во второй срок отбора показал достоверное уменьшение количества кальция в почве опытных вариантов. Учет корневых гнилей в то же время показал достоверно меньшее количество больных растений на опытных делянках. Уменьшение количества кальция в почве свидетельствует о том, что интенсивное поглощение кальция было использовано растениями пшеницы для защиты от возбудителей корневых гнилей. Из литературных источников известно, что воздействие различных стрессовых факторов (в том числе и патогенов) приводит к повышению содержания ионов кальция в цитоплазме за счет увеличения импорта из внешней среды. Повышение концентрации ионов кальция в цитоплазме приводит к активации растворимых и мембраносвязанных Ca²⁺-зависимых протеинкиназ. Они участвуют в фосфорилировании белковых факторов регуляции экспрессии защитных генов[1].

Таблица 4

Определение кальция и магния в почве по фазам вегетации пшеницы

<table>
<thead>
<tr>
<th>Вариант опыта</th>
<th>Ca, мг.экв/100г</th>
<th>Mg, мг.экв/100г</th>
</tr>
</thead>
<tbody>
<tr>
<td>фаза кущения (16.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Контроль</td>
<td>20,50</td>
<td>4,98</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,01%</td>
<td>21,32</td>
<td>3,23</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,001%</td>
<td>21,02</td>
<td>3,84</td>
</tr>
<tr>
<td>фаза цветения (13.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Минеральный фон</td>
<td>22,04</td>
<td>2,37</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,01%</td>
<td>19,67</td>
<td>5,29</td>
</tr>
<tr>
<td>Гум. преп. с Ca 0,001%</td>
<td>18,95</td>
<td>6,30</td>
</tr>
</tbody>
</table>
Интенсивное поглощение магния из почвы, происшедшее в фазу кущения в опытных вариантах позволило увеличить содержание хлорофиллов а и b во флаговом листе растений пшеницы (табл. 2), поскольку магний — необходимый элемент для построения молекулы хлорофилла. Во второй срок отбора количество магния в почве опытных вариантов достоверно больше, чем в контрольном варианте. Это, по-видимому, связано с выделением магния из почвенно-поглощающего комплекса из-за увеличенных корневых выделений растениями пшеницы.

В фазу кущения и цветения показатель пораженности яровой пшеницы корневыми гнилями (фузариоз, гельминтоспориоз, альтернариоз) в опытных вариантах достоверно уменьшился и составил 5,25-11,75% (табл. 5).

Зерно нового урожая также было проверено на наличие возбудителей корневыми гнилями. Выявлено достоверное уменьшение общей зараженности зерна с 39% в контроле до 20-21% в опытных вариантах. Такое снижение зараженности неизменно приведет к уменьшению содержания микотоксинов в зерне, и соответственно улучшит качество продукции.

Таблица 5
Пораженность посевов пшеницы корневыми гнилями по фазам вегетации (распространенность болезней, %)

<table>
<thead>
<tr>
<th>Вариант опыта</th>
<th>Фаза кущения (6.06)</th>
<th>Фаза цветения (14.07)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Контроль</td>
<td>18,20</td>
<td>17,25</td>
</tr>
<tr>
<td>Гуминовый препарат с Са 0,01%</td>
<td>10,10</td>
<td>5,25</td>
</tr>
<tr>
<td>Гуминовый препарат с Са 0,001%</td>
<td>11,12</td>
<td>11,75</td>
</tr>
<tr>
<td>НСР05</td>
<td>6,39</td>
<td>6,08</td>
</tr>
</tbody>
</table>

Таким образом, испытанный в полевом опыте гуминовый препарат с кальцием показал, что обе испытанные концентрации препарата положительно влияли на показатели роста и развития растений, содержание зеленных пигментов в листьях яровой пшеницы. Препарат уменьшил количество больных корневыми гнилями растений и зараженность зерна нового урожая. Кроме того, препарат позволил улучшить структуру урожая и урожайность зерна яровой пшеницы. Что касается выбора оптимальной концентрации, по-видимому, объективно лучшей будет концентрация 0,001%, поскольку меньшая концентрация будет экономически более оправдана.

Список литературы

2. Заявка на изобретение № 2012134999, пр. 15.08.2012. Касимова Л.В., Кравец А.В., Николаева Д.Л. Стимулятор роста растений, обогащенный кальцием, способ его получения и способ обработки семян.

УДК 633.11: 631.524.5 (571.15)

Экологическая пластичность сортообразцов твёрдой пшеницы по массе 1000 зёрен в условиях Приобской лесостепи Алтайского края

А.И. Зиборов, н.с.

ГНУ Алтайский НИИСХ Россельхозакадемии

Масса 1000 зёрен является многоплановым показателем, который, с одной стороны, определяет уровень продуктивности колоса или растения и характеризует реакцию сорта на засушливые условия [1], а с другой относится к показателям качества зерна и влияет на выход муки или крупы [2, 3]. Сильное влияние на данный признак оказывают генотип и окружающая среда, но в то же время, испытываемые образцы могут существенно различаться по реакции на разные экологические и метеорологические условия [4, 5]. В данных исследованиях проведена оценка экологических реакций сортообразцов твёрдой пшеницы по массе 1000 зёрен на изменение условий среды.

Материал, методика и условия проведения эксперимента

Полевые опыты были заложены на стационаре лаборатории селекции твёрдой пшеницы Алтайского НИИСХ в 2006-2008 гг. Объектами исследований послужили 7 сортообразцов местной селекции: Алтайская нива, Алтайский янтарь, Алейская, Салют Алтая, Памяти Янченко, Гордеиформе 415 и Субаустрале 489. Образцы высевали в три срока по трем предшественникам (чистый пар, горох, пшеница после пара). Дату первого срока определяли по физической готовности почвы весной, последующие — с интервалом около 10 суток. Норма высева - 5 млн. всх. зёрен на 1 га. Массу 1000 зёрен определяли в двух несмежных повторениях по ГОСТу 10842-76 «Зерно. Метод определения массы 1000 зёрен». Параметры экологической пластичности определяли по методу S.A. Eberhart & W.A. Russell [7].
Климатические условия в годы проведения исследований отличались как по температурному режиму, так и по количеству и распределению осадков. В целом метеорологические условия вегетационного периода 2006 года можно охарактеризовать как умеренно благоприятные, с проявлением раннелетней засухи умеренной интенсивности, а 2007 года - как благоприятные в первой половине вегетации и засушливые - во второй. Условия вегетации яровой твёрдой пшеницы в 2008 г. были благоприятными с кратковременной засухой на начальном этапе становления и развития растений.

Результаты и обсуждение

Моделируемые с помощью предшественников и сроков посева различные фоновые условия в годы исследований определили вариацию признака в среднем по сортам от 34,1 г до 52,5 г. По данным дисперсионного анализа основной вклад в общую изменчивость массы 1000 зёрен вносили условия лет исследований (53,8%). Вклады факторов «генотипы» и «срока посева» были близки и составили 13,9 и 13,6% соответственно. Высокой оказалась и доля взаимодействия «год х срок посева» (9,9%). Слабое, но статистически значимое влияние оказали и предшественники (0,9%), а также взаимодействия факторов «год х предшественник» (3,0%), «предшественник х срок посева» (2,1%), «год х генотип» (0,7%), «год х предшественник х генотип» (0,9%).

Наименьшее среднесортовое значение признака получено в 2007 году (38,0 г), вследствие недостатка атмосферных осадков во второй половине вегетации. В 2008 году среднесортовая масса 1000 зёрен была 41,2 г, а в 2006 – 46,2 г. Среднее значение признака по опыту составило 41,8 г. В среднем за три года колебания массы 1000 зёрен по предшественникам были незначительными от 41,3 г по пшенице до 42,3 г по гороху (табл. 1). При этом по всем предшественникам отмечен рост показателя в сторону более позднего срока посева. Так при раннем посеве масса 1000 зёрн составила 39,8 г, при среднем – 41,7 г, а при позднем – 43,9 г. Из агротехнических вариантов в среднем за три года наибольшую массу 1000 зёрн обеспечивал поздний посев по пшенице (44,9 г), а наименьшую – ранее по пару (39,1 г). Вероятно, снижение других элементов структуры по стерневому фону было компенсировано растениями увеличением массы зерновки.

Изучаемые генотипы достоверно отличались по массе 1000 зёрен. Так значения признака сортов Памяти Янченко (46,8 г), Алтайская нива (44,1 г) и Алейская (43,9 г) было существенно выше среднесортового, а остальных номеров – достоверно ниже (табл. 2).

Минимальное снижение массы 1000 зёрен отмечено у сорта Памяти Янченко (до 40,0 г) (табл. 2). Этот же сорт вместе с Алтайской нивой и Алейской отличался и наиболее высоким максимальным значением, что
говорит об отзывчивости данных образцов. Салют Алтая и Гордеиформе 415 имели близкие значения пределов к среднесортовым.

Изменчивость массы 1000 зерен в опыте была средней (CV=12,6%) (табл. 2). Ниже среднего коэффициенты вариации были у Гордеиформе 415 (10,7%) и Салюта Алтая (11,5%). Более высокими его значениями обладали Алтайский янтарь (14,2%), Алейская (13,5%) и Алтайская нива (13,3%). Следовательно, линия Гордеиформе 415 обладает наибольшей в наборе стабильностью по массе 1000 зерен.

Таблица 1
Масса 1000 зерен твёрдой пшеницы по различным агрофонам, г (2006-2008 гг.)

<table>
<thead>
<tr>
<th>Вариант</th>
<th>Алтайская нива</th>
<th>Салют Алтая</th>
<th>Памяти Янченко</th>
<th>Алтайский янтарь</th>
<th>Гордеиформе 415</th>
<th>Алейская</th>
<th>Субаустрале 489</th>
<th>Среднее</th>
</tr>
</thead>
<tbody>
<tr>
<td>Пар</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>41,4</td>
<td>36,7</td>
<td>44,0</td>
<td>37,1</td>
<td>38,2</td>
<td>41,1</td>
<td>35,7</td>
<td>39,1</td>
</tr>
<tr>
<td>II</td>
<td>45,4</td>
<td>41,4</td>
<td>48,8</td>
<td>39,8</td>
<td>40,6</td>
<td>43,6</td>
<td>37,4</td>
<td>42,4</td>
</tr>
<tr>
<td>III</td>
<td>46,3</td>
<td>41,5</td>
<td>48,7</td>
<td>41,6</td>
<td>41,6</td>
<td>46,1</td>
<td>40,5</td>
<td>43,7</td>
</tr>
<tr>
<td>ср.</td>
<td>44,3</td>
<td>39,9</td>
<td>47,1</td>
<td>39,5</td>
<td>40,1</td>
<td>43,6</td>
<td>37,9</td>
<td>41,8</td>
</tr>
<tr>
<td>Горох</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>43,3</td>
<td>39,3</td>
<td>44,4</td>
<td>38,6</td>
<td>41,0</td>
<td>42,8</td>
<td>36,9</td>
<td>40,9</td>
</tr>
<tr>
<td>II</td>
<td>46,2</td>
<td>40,7</td>
<td>48,7</td>
<td>39,8</td>
<td>42,0</td>
<td>44,9</td>
<td>38,2</td>
<td>42,9</td>
</tr>
<tr>
<td>III</td>
<td>46,0</td>
<td>43,4</td>
<td>46,4</td>
<td>42,0</td>
<td>41,5</td>
<td>43,4</td>
<td>39,0</td>
<td>43,1</td>
</tr>
<tr>
<td>ср.</td>
<td>45,2</td>
<td>41,1</td>
<td>46,5</td>
<td>40,1</td>
<td>41,5</td>
<td>43,7</td>
<td>38,0</td>
<td>42,3</td>
</tr>
<tr>
<td>Пшеница</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>41,1</td>
<td>35,6</td>
<td>44,7</td>
<td>37,8</td>
<td>38,1</td>
<td>41,9</td>
<td>35,8</td>
<td>39,3</td>
</tr>
<tr>
<td>II</td>
<td>40,8</td>
<td>36,9</td>
<td>46,6</td>
<td>36,8</td>
<td>38,3</td>
<td>42,3</td>
<td>36,1</td>
<td>39,7</td>
</tr>
<tr>
<td>III</td>
<td>46,6</td>
<td>43,1</td>
<td>49,3</td>
<td>42,2</td>
<td>42,5</td>
<td>49,0</td>
<td>41,3</td>
<td>44,9</td>
</tr>
<tr>
<td>ср.</td>
<td>42,8</td>
<td>38,5</td>
<td>46,8</td>
<td>38,9</td>
<td>39,6</td>
<td>44,4</td>
<td>37,7</td>
<td>41,3</td>
</tr>
<tr>
<td>Среднее</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>41,9</td>
<td>37,2</td>
<td>44,3</td>
<td>37,8</td>
<td>39,1</td>
<td>41,9</td>
<td>36,1</td>
<td>39,8</td>
</tr>
<tr>
<td>II</td>
<td>44,1</td>
<td>39,7</td>
<td>48,0</td>
<td>38,8</td>
<td>40,3</td>
<td>43,6</td>
<td>37,3</td>
<td>41,7</td>
</tr>
<tr>
<td>III</td>
<td>46,3</td>
<td>42,7</td>
<td>48,1</td>
<td>41,9</td>
<td>41,9</td>
<td>46,2</td>
<td>40,3</td>
<td>43,9</td>
</tr>
</tbody>
</table>

I, II, III — первый, второй и третий сроки посева соответственно, ср. — среднее

Согласно коэффициенту регрессии сорта Памяти Янченко, Алтайская нива, Алтайский янтарь и Алейская обладают хорошей отзывчивостью по данному признаку (b > 1). Салют Алтая и Гордеиформе 415 относятся к экстенсивным формам, а Субаустрале 489 характеризуется реакцией адекватной среднесортовой.
Минимальное отклонение от линии регрессии установлено у линии Гордеиформе 415 (2,62), которая обладала и наименьшим в наборе коэффициентом вариации. Средние отклонения характерны для Алтайского янтаря, Памяти Янченко и Субауралье 489, что указывает на среднюю стабильность генотипов в данном наборе. Сильные отклонения установлены у Алтайской нивы, Салюта Алтая и Алейской.

Таблица 2
Параметры экологической пластичности твёрдой пшеницы по массе 1000 зёрен

<table>
<thead>
<tr>
<th>Сорт, линия</th>
<th>Средняя, г</th>
<th>Лимиты, г</th>
<th>Коэффициент вариации (CV), %</th>
<th>Параметры по S.A. Eberhart & W.A. Russell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>коэффициент регрессии (b1)</td>
</tr>
<tr>
<td>Алтайская нива</td>
<td>44,1</td>
<td>35,3-58,2</td>
<td>13,3</td>
<td>1,11</td>
</tr>
<tr>
<td>Салют Алтая</td>
<td>39,9</td>
<td>32,5-51,2</td>
<td>11,5</td>
<td>0,80</td>
</tr>
<tr>
<td>Памяти Янченко</td>
<td>46,8</td>
<td>40,0-58,3</td>
<td>12,3</td>
<td>1,12</td>
</tr>
<tr>
<td>Алтайский янтарь</td>
<td>39,5</td>
<td>28,5-52,0</td>
<td>14,2</td>
<td>1,10</td>
</tr>
<tr>
<td>Гордеиформе 415</td>
<td>40,4</td>
<td>33,3-50,4</td>
<td>10,7</td>
<td>0,85</td>
</tr>
<tr>
<td>Алейская</td>
<td>43,9</td>
<td>32,8-55,4</td>
<td>13,5</td>
<td>1,09</td>
</tr>
<tr>
<td>Субауралье 489</td>
<td>37,9</td>
<td>30,3-48,6</td>
<td>13,1</td>
<td>0,94</td>
</tr>
<tr>
<td>Среднее</td>
<td>41,8</td>
<td>33,2-53,4</td>
<td>12,6</td>
<td>-</td>
</tr>
<tr>
<td>НСР05</td>
<td>0,8</td>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Таким образом, по совокупности параметров к экологически пластичным образцам по массе 1000 зёрен можно отнести Памяти Янченко и Алтайскую ниву. Сорт Алейская обладает отзывчивостью, а линия Гордеиформе 415 стабильностью по данному признаку.

Заключение
Масса 1000 зёрен является средневарьирующим признаком, основное влияние на который оказывают погодные условия периода вегетации и генотипы. Установлены достоверные межсортовые отличия по данному признаку. Наиболее крупнозёрными являются Памяти Янченко, Алтайская нива и Алейская. Первые два можно отнести к экологически пластичным, Алейскую к отзывчивым, а Гордеиформе 415 – к стабильным генотипам по массе 1000 зёрен.
Список литературы

6. ГОСТ 10842-76 «Зерно. Метод определения массы 1000 зёрен».

УДК 631.3:635.939.73

Повышение производительности труда при ручной уборке урожая жимолости

Канарский А.А., к. с.-х. н., Кушнарев М.А., к. с.-х. н.

ГНУ НИИСС Россельхозакадемии
E-mail: sairkanary@mail.ru

Жимолость синяя (Lonicera caerulea Rehd.) представляет большой интерес для промышленного и любительского садоводства.

Плоды жимолости являются естественным комплексным концентратом витаминов и различных других биологически активных веществ. Они богаты витаминами С и Р, сахарами, пектинами, макро- и микроэлементами, органическими кислотами, содержат противоязвенное соединение бе-таин. Установлено, что плоды жимолости обладают капилляропротивляющим и защитным антирадиационным действием.

Ценность этой культуры определяется высокой зимостойкостью, устойчивостью цветков к весенним заморозкам, ежегодным плодоношени-
ем и отличается неприхотливостью к условиям произрастания, что обеспечивает ежегодное стабильное плодоношение [2, 3].

Для удовлетворения постоянно растущих потребностей населения в плодах этой ценной культуры необходимо увеличить объем производства в несколько раз. Решающим фактором является повышение производительности труда при уборке урожая.

Сбор проводят в основном вручную. Со слабо осьпаемыми сортами можно проводить уборку в 2 приема.

В отдельные годы объем затрат на уборке урожая с привлечением ручного труда достигает 70-80% от общих.

Высокая стоимость импортных уборочных модулей и отсутствие отечественных приводит к поиску альтернативных способов решения уборки урожая, таких как ручной сбор способом отряхивания.

Цель исследований — провести оценку и выделить сорта жимолости, пригодные для внедрения ручной уборки урожая способом отряхивания.

Условия, объекты и методы проведения исследований

Исследования проводили в 2010-2012 гг. на территории опытного поля ГНУ НИИСС Россельхозакадемии. Почва участка чернозем выщелоченный среднемощный малогумусный среднесуглинистый.

Объектами исследований являлись сорта и гибриды жимолости селекции ГНУ НИИСС Россельхозакадемии (г. Барнаул) и ФГУП «Бакчарское» (с. Бакчар, Томская область) 2006-2007 гг. посадки.

Погодные условия за период исследований, для роста и плодоношения складывались относительно благоприятно. Зимы были умеренно холодными, лишь в январе и феврале кратковременно отмечались -38,0...-39,5 °С, что не привело к серьезному подмерзанию.

Усилие отрыва плодов от плодоножки определяли прибором «Индикатор силы Дина-2», а усилие раздавливания плодов - «Индикатор силы Плодтест».

Повторность вариантов 3-кратная. В учетной делянке 5 растений. Схема посадки 4,0х1,2 м. Почва содержалась по типу черного пара.

Экспериментальные данные обработаны статистико-математическими методами [1].

Результаты исследований

Технология ручной уборки способом отряхивания предусматривает проведение нескольких операций: во-первых, у основания куста расстилается улавливающий материал, на который падают плоды; во-вторых, ветви жимолости руками наклоняются ближе к постеленному материалу и встряхивают, что приводит к отрыву плодов от плодоножки; в-третьих, собирают плоды, очищают от примесей и ссыпают в тару.
При данном способе сбора более высокую производительность демонстрируют высокорослые сорта, которые на 5-6 год после посадки в сад формируют габитус не менее 100-120 см, обеспечивая снижение потерь при отряхивании, что характерно для большинства анализируемых, кроме Золушки и Синий шарик, сортов (табл. 1).

При подборе сортов, пригодных к уборке способом отряхивания, оцениваются физико-механические свойства плодов, которые несколько отличаются от нормативов, принятых для механизированной уборки ягодо-уборочным комбайном.

Таблица 1
Особенности роста, плодоношения и физико-механические свойства сортов жимолости, 2010-2012 гг.

<table>
<thead>
<tr>
<th>Сортообразец</th>
<th>Высота куста, см</th>
<th>Ширина куста, см</th>
<th>Усилие отрыва</th>
<th>Усилие раздавливания</th>
<th>Средняя масса плодов, гр.</th>
<th>Урожайность, т/га</th>
</tr>
</thead>
<tbody>
<tr>
<td>Берел (к)</td>
<td>158,3</td>
<td>123,3</td>
<td>156,7</td>
<td>116,8</td>
<td>186,9</td>
<td>1,1</td>
</tr>
<tr>
<td>Ассоль</td>
<td>113,3</td>
<td>120,0</td>
<td>130,0</td>
<td>59,9</td>
<td>65,1</td>
<td>1,0</td>
</tr>
<tr>
<td>Бакчарская юбилейная</td>
<td>110,0</td>
<td>96,7</td>
<td>106,7</td>
<td>69,2</td>
<td>100,0</td>
<td>0,9</td>
</tr>
<tr>
<td>Бакчарский великан</td>
<td>143,3</td>
<td>126,7</td>
<td>166,7</td>
<td>83,5</td>
<td>86,0</td>
<td>1,5</td>
</tr>
<tr>
<td>Герда</td>
<td>125,0</td>
<td>136,7</td>
<td>158,3</td>
<td>50,1</td>
<td>63,0</td>
<td>0,9</td>
</tr>
<tr>
<td>Гордость Бакчара</td>
<td>111,7</td>
<td>126,7</td>
<td>146,7</td>
<td>61,1</td>
<td>135,7</td>
<td>1,2</td>
</tr>
<tr>
<td>Дочь великанана</td>
<td>100,0</td>
<td>103,3</td>
<td>103,3</td>
<td>95,3</td>
<td>119,1</td>
<td>1,5</td>
</tr>
<tr>
<td>Золушка</td>
<td>80,0</td>
<td>103,3</td>
<td>103,3</td>
<td>60,4</td>
<td>85,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Лазурная</td>
<td>113,3</td>
<td>140,0</td>
<td>138,3</td>
<td>80,4</td>
<td>88,3</td>
<td>0,7</td>
</tr>
<tr>
<td>Нарымская</td>
<td>103,3</td>
<td>113,3</td>
<td>123,3</td>
<td>67,7</td>
<td>137,7</td>
<td>0,9</td>
</tr>
<tr>
<td>Огненный опал</td>
<td>148,3</td>
<td>153,3</td>
<td>173,3</td>
<td>83,8</td>
<td>97,0</td>
<td>0,9</td>
</tr>
<tr>
<td>Память Гидзюка</td>
<td>108,3</td>
<td>106,7</td>
<td>136,7</td>
<td>74,5</td>
<td>101,3</td>
<td>0,8</td>
</tr>
<tr>
<td>Сибирячка</td>
<td>126,7</td>
<td>135,0</td>
<td>145,0</td>
<td>91,5</td>
<td>91,0</td>
<td>0,8</td>
</tr>
<tr>
<td>Сильвинка</td>
<td>130,0</td>
<td>123,3</td>
<td>153,3</td>
<td>77,4</td>
<td>82,7</td>
<td>1,6</td>
</tr>
<tr>
<td>Синий шарик</td>
<td>90,0</td>
<td>93,3</td>
<td>113,3</td>
<td>61,3</td>
<td>72,5</td>
<td>1,1</td>
</tr>
<tr>
<td>Чульмская</td>
<td>106,7</td>
<td>113,3</td>
<td>123,3</td>
<td>102,3</td>
<td>129,7</td>
<td>1,4</td>
</tr>
<tr>
<td>Югана</td>
<td>120,0</td>
<td>123,3</td>
<td>126,7</td>
<td>74</td>
<td>110,5</td>
<td>1,3</td>
</tr>
<tr>
<td>НСР пт</td>
<td>9,8</td>
<td>11,4</td>
<td>11,7</td>
<td>35,7</td>
<td>41,6</td>
<td>0,4</td>
</tr>
</tbody>
</table>

* Результаты за 2012 г.

Пригодные для механизированной уборки сорта должны иметь усилие отрыва 90-100 г. Это обеспечивает плодам высокую степень отделения при воздействии активаторов комбайна и низкую осипаемость при различных факторах воздействия на куст (ветровые, механические и т.д.)
Для отряхивания необходимо подобрать сорта с усилием отрыва 50-80 г. При более высоком значении для снятия плодов резко повышаются трудозатраты на процесс отделения, а при величине менее 50 г у сортов увеличиваются потери в процессе уборки за счет осипаемости.

Практические испытания показали, что для полного снятия плодов сорта Памяти Гидзюка достаточно произвести 2-3 интенсивных встряхивания, что уменьшает трудовые затраты в сравнении с контрольным сортом в 3,2 раза и уменьшает время на сбор 10 кг плодов в 4,2 раза (табл. 2).

Таблица 2

<table>
<thead>
<tr>
<th>Сорт</th>
<th>Усилие отрыва, г</th>
<th>Количество встряхиваний, шт.</th>
<th>Время на сбор 10 кг плодов, мин.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Берель (к)</td>
<td>116,8</td>
<td>8,0</td>
<td>18,0</td>
</tr>
<tr>
<td>Памяти Гидзюка</td>
<td>74,5</td>
<td>2,5</td>
<td>75,0</td>
</tr>
</tbody>
</table>

При использовании комбайна на сборе плодов жимолости с усилием раздавливания менее 200 г получается малотранспортабельная продукция. Это связано с тем, что плод должен выдержать технологический процесс: воздействие рабочих органов активатора, падение на улавливающие диски с высоты 150-200 см, транспортировку в приемные ящики и доставку до пункта переработки.

В случае ручной уборки отряхиванием плод должен быть устойчив к падению с высоты не более 50 см и к транспортировке в пункт переработки. В этом случае высокое качество плодов обеспечит показатель усилия раздавливания более 100 г.

Высокую производительность труда и экономический эффект при сборе обеспечат сорта, обладающие высокой урожайностью, характеризующейся величиной на 5-6 год не менее 4-5 т/га.

Оптимальное сочетание выделенных показателей обеспечивает повышение производительности труда в сравнении с ручным сбором в 3-5 раз. Перечисленным требованиям отвечают сорта Нарымская, Огненный опал, Память Гидзюка, Югана.

Внедрение наиболее пригодных сортов позволит рабочему за смену собирать до 100-150 кг плодов. С учетом разных сроков плодоношения уборка жимолости возможна до 15 дней. Тогда 1 рабочий за сезон способен собрать от 1,5 до 2,3 тонн ягоды. Это свидетельствует о возможности высокой производительности труда даже при ручной уборке.

Выводы

Для повышения производительности труда в 3-5 раз необходимо производить уборку урожая плодов жимолости способом отряхивания, что
будет способствовать повышению экономической эффективности возде­лывания культуры.

По итогам сортоизучения жимолости перспективными для уборки урожая способом отряхивания являются сорта Нарымская, Огненный опал, Память Гидзюка, Югана. Они обладают комплексом хозяйственно-ценных признаков, крупноплодностью, а полученная экологически чистая продукция будет способствовать оздоровлению населения России, развитию по­ставок высоко ликвидной продукции.

Список литературы

УДК 633.11

Исходный материал для селекции мягкой пшеницы степного экотипа в Алтайском крае

С.Б. Лепехов, н. с.,
ГНУ Алтайский НИИСХ Россельхозакадемии

Алтайский край - крупный производитель зерна пшеницы в Сибири. Площадь посева мягкой пшеницы в этом регионе в настоящее время нахо­дится на уровне 2,0–2,3 млн. га [1]. Разнообразие агроклиматических усло­вий Алтайского края обусловлено в основном влиянием горной системы Алтая на формирование климата прилегающих районов, неоднородностью рельефа, значительной протяженностью с севера на юг и с запада на во­сток. Главной особенностью территории является смещение природных зон к юго-востоку. Эти факторы определяют резкое изменение агроклима­тических условий на сравнительно небольших расстояниях. Кроме этого для территории региона характерны значительные колебания погодных факторов по годам [2].

В решении сложных задач функционирования растениеводства на со­временном этапе весьма высока роль хорошо адаптированного сорта, как реальной основы наращивания производства и повышения качества расте­ниеводческой продукции. На долю сорта по разным оценкам приходится 25-40% общего роста урожайности важнейших сельскохозяйственных культур [3]. Селекционный прогресс урожайности сортов яровой мягкой
пшеницы различных групп спелости за 1960-1995 гг. составил 2,4-9,2 ц/га, или 0,5-1,5 ц/га в среднем на одну сортосмену пшеницы [4].

Селекционная работа включает в себя постоянное изучение коллекционных сортообразцов различного эколого-географического происхождения. Такое изучение исходного материала в лаборатории селекции мягкой пшеницы Алтайского НИИСХ осуществляется ежегодно. В связи с тем, что 60% посевных площадей пшеницы сосредоточено в степной зоне Алтайского края, в лаборатории уделяется особое внимание селекционному направлению по созданию сортов степного экологического типа.

Комплексное изучение генофонда яровой мягкой пшеницы различного эколого-географического происхождения, проведённое в 2010-2012 гг., в условиях Приобской лесостепи Алтайского края ставило целью выявить перспективный исходный материал для создания сортов степного экотипа.

Материал, методика и условия проведения эксперимента

Объектом исследования являлись 75 сортов и линий яровой мягкой пшеницы степного экотипа отечественной и зарубежной селекции трёх групп спелости.

Полевые эксперименты проведены на опытных полях Алтайского НИИСХ в период с 2010 по 2012 гг. Посев осуществляли тракторной сеялкой ССФК-7 во II декаде мая по двум предшественникам: чистый пар и зерновые (вторая культура после пара, предшественник — пшеница). Норма высева 5 млн. всхожих зёрен на 1 гектар. Площадь делянки 2 м², повторность трёхкратная. Уборку проводили селекционным комбайном Сампо 130 в фазу полной спелости растений. В качестве стандартов использовали среднеранний сорт Алтайская 98, среднеспелый — Алтайская 100 и среднепоздний — Алтайская 105.

Фенологические наблюдения, а также устойчивость к листостебельным болезням, полеганию и жаростойкость исследованы по методике ВИР [5]. Определение натуры и содержание белка в зерне произведено в лаборатории оценки качества зерна Алтайского НИИСХ.

Погодные условия 2010 года можно охарактеризовать как засушливые в первой половине вегетации и влажные во второй. Условия вегетационного периода 2011 года являлись засушливыми в средней степени с устойчивой засухой. В 2012 году наблюдалась нарастающая к цветению почвенная засуха при экстремально высоких температурах воздуха в начале вегетации.

Результаты исследований

Засухоустойчивость. В степных районах Алтайского края основными лимитирующими факторами формирования высокой урожайности пшеницы являются дефицит доступной почвенной влаги, жесткий температурный режим в период закладки и формирования репродуктивных органов.
Следовательно, селекция на урожайность в таких условиях — это отбор прежде всего на засухо- и жаростойкость растений [6]. Засухоустойчивость в агрономическом плане определяют способностью сорта дать наибольшую по сравнению с другими сортами урожайность в условиях засухи, что зависит не только от устойчивости в узком физиологическом понимании, но и от уровня потенциальной продуктивности сорта [7].

Наиболее объективной и достоверной оценкой влияния засухи на растения является непосредственное изучение их в засушливых условиях. Фонами для оценки засухоустойчивости являлись: вариант опыта, размещённый по зерновому предшественнику в 2010-2012 гг., и по пару в 2012 году. Последний был включён в анализ по причине существенного снижения на нём урожайности всех генотипов вследствие экстремальной засухи.

В среднеранней группе к наиболее засухоустойчивым относятся Тулевская (Кемеровский НИИСХ) и Целинная 3/с (Казахстан), сформировавшие наибольшую урожайность в засушливых условиях и имеющие два значимых превышения урожайности по сравнению с Алтайской 98 (таблица).

В среднеспелой группе сортообразцов к генотипам, имеющим хотя бы одну достоверную прибавку по урожайности к стандарту, относятся: Алтайская жница, Лютесценс 43/с, Лютесценс 36/с, Лютесценс 697 (Алтайский НИИСХ), Светланка, Омская 36, Лютесценс 827/01-42 (СибНИИСХ), Эртроспермум 78 (ОмГАУ), Дуэт (Челябинский НИИСХ), Саратовская 71, Саратовская 73 (НИИСХ Юго-Востока), что в совокупности с высокой средней урожайностью позволяет говорить об их хорошей засухоустойчивости. Наиболее засухоустойчивым образцом являлась линия Лютесценс 697. Светланка, Омская 36, Лютесценс 827/01-42, Эртроспермум 78 достоверно превзошли Алтайскую 100 в 2011 и в 2012 году по пару. В отличие от них Саратовская 71, Саратовская 73, Лютесценс 43/с, Лютесценс 36/с, Лютесценс 899 являлись наиболее адаптивными к засухе в начале вегетации (2010 и 2012 гг.).

В среднепоздней группе лучшими сортами для засушливых условий являются: Фаворит, Воевода (НИИСХ Юго-Востока), Голубковская (ОмГАУ), Омская 28 (СибНИИСХ), которые имели две достоверные прибавки к урожайности стандарта.

Жаростойкость. Наилучшие условия для оценки данного свойства сложились в 2012 году. Отличительной особенностью засухи этого года являлся нарастающий дефицит влаги в почве к цветению на фоне очень высоких среднесуточных температур. К образцам с высоким баллом жаростойкости (> 7) отнесены: Памяти Азиева, Саратовская 29, Саратовская 72, Саратовская 73, Лютесценс 43/с, Лютесценс 827/01-42, Тулайковская золотистая, Фаворит, Лютесценс 748, Сибирская 99, Лютесценс 53/95, Карабалыкская 98.
Таблица
Урожайность засухоустойчивых сортообразцов яровой мягкой пшеницы по различным предшественникам (2010-2012 гг.), г/м²

<table>
<thead>
<tr>
<th>Сорт/линия</th>
<th>Пшеница 2010</th>
<th>2011</th>
<th>2012</th>
<th>Пар 2012</th>
<th>Среднее</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Группа среднеранних генотипов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алтайская 98, ст.</td>
<td>115</td>
<td>138</td>
<td>56</td>
<td>97</td>
<td>102</td>
</tr>
<tr>
<td>Тулеевская</td>
<td>138</td>
<td>192</td>
<td>62</td>
<td>142</td>
<td>133</td>
</tr>
<tr>
<td>Целинная 3/с</td>
<td>121</td>
<td>182</td>
<td>74</td>
<td>156</td>
<td>133</td>
</tr>
<tr>
<td>Группа среднеспелых генотипов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алтайская 100, ст.</td>
<td>125</td>
<td>167</td>
<td>65</td>
<td>111</td>
<td>117</td>
</tr>
<tr>
<td>Алтайская жниц</td>
<td>193</td>
<td>187</td>
<td>81</td>
<td>124</td>
<td>146</td>
</tr>
<tr>
<td>Саратовская 71</td>
<td>179</td>
<td>183</td>
<td>84</td>
<td>140</td>
<td>146</td>
</tr>
<tr>
<td>Саратовская 73</td>
<td>178</td>
<td>179</td>
<td>80</td>
<td>149</td>
<td>147</td>
</tr>
<tr>
<td>Лютесценс 43/с</td>
<td>179</td>
<td>171</td>
<td>87</td>
<td>155</td>
<td>148</td>
</tr>
<tr>
<td>Лютесценс 827/01-42</td>
<td>162</td>
<td>216</td>
<td>68</td>
<td>152</td>
<td>149</td>
</tr>
<tr>
<td>Дугт</td>
<td>163</td>
<td>198</td>
<td>81</td>
<td>159</td>
<td>150</td>
</tr>
<tr>
<td>Эритроспермум 78</td>
<td>169</td>
<td>221</td>
<td>58</td>
<td>156</td>
<td>151</td>
</tr>
<tr>
<td>Омская 36</td>
<td>153</td>
<td>236</td>
<td>71</td>
<td>150</td>
<td>152</td>
</tr>
<tr>
<td>Светланка</td>
<td>150</td>
<td>231</td>
<td>82</td>
<td>164</td>
<td>157</td>
</tr>
<tr>
<td>Лютесценс 36/с</td>
<td>186</td>
<td>190</td>
<td>90</td>
<td>161</td>
<td>157</td>
</tr>
<tr>
<td>Лютесценс 899</td>
<td>244</td>
<td>186</td>
<td>69</td>
<td>152</td>
<td>163</td>
</tr>
<tr>
<td>Лютесценс 697</td>
<td>208</td>
<td>230</td>
<td>88</td>
<td>182</td>
<td>177</td>
</tr>
<tr>
<td>Группа среднепоздних генотипов</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Алтайская 105, ст.</td>
<td>220</td>
<td>156</td>
<td>36</td>
<td>129</td>
<td>135</td>
</tr>
<tr>
<td>Фаворит</td>
<td>187</td>
<td>208</td>
<td>49</td>
<td>185</td>
<td>157</td>
</tr>
<tr>
<td>Голубковская</td>
<td>189</td>
<td>205</td>
<td>58</td>
<td>181</td>
<td>158</td>
</tr>
<tr>
<td>Омская 28</td>
<td>167</td>
<td>213</td>
<td>56</td>
<td>198</td>
<td>159</td>
</tr>
<tr>
<td>Воевода</td>
<td>178</td>
<td>220</td>
<td>56</td>
<td>197</td>
<td>163</td>
</tr>
<tr>
<td>НСР0.05</td>
<td>52</td>
<td>34</td>
<td>27</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

Устойчивость к полеганию. Помимо засухи в основных районах возделывания пшеницы на Алтае, существенными причинами снижения урожайности является полегание посевов [8]. Ливни и шквалистый ветер в фазу колошения пшеницы в 2010 году способствовали полеганию растений. Результаты оценок на устойчивость к этому негативному явлению показали, что среди исследуемых сортов преобладали неустойчивые. В наименьшей степени (балл > 8) полегание отмечено у Тулеевской, Алтайской жницы, Алтайской 325, Лютесценс 827/01-42, Эритроспермум 78, Астаны 2, Апасовки, Омской 28, ОмГАУ-90, Лютесценс 120-03, Карабалыкской 98.

Показатели качества зерна. Яровая мягкая пшеница является основным сырьем для производства продуктов хлебопекарного назначения. Помимо высокой урожайности к новым сортам предъявляются высокие тре-
борования по качеству зерна. В среднем по всем агроэкологическим условиям к 1 классу по содержанию белка в зерне (> 14,5%) относились: Новосибирская 29, Алтайская 325, Тулайковская золотистая; к 2 классу (> 13,5%) – Алтайская жница, Омская 36, Лютесценс 259, Эритроспермум 78, Дузет, Тулайковская остистая, Степная 15, Степная 16, Карабалыкская 2, Лютесценс 1085, Лютесценс 1545, Астана, Лебёдушка, ОмГАУ-90, Лютесценс 120-03, Шортандинская 125, Шортандинская улучшенная.

Среди перечисленных образцов, лишь немногие высокобелковые сорта были засухоустойчивыми.

Только Лютесценс 697, Алтайская жница, Воевода по показателю натуры зерна соответствовали 1 или 2 классу качества (> 750 г/л).

Заключение

Условия лет вегетации в совокупности с фоном, имитирующим почвенную засуху, позволили оценить исходный материал по наиболее важным для селекции пшеницы показателям. Значительная трудность для дальнейшей селекции степного экотипа будет заключаться в сочетании в одном сорте высокой урожайности при засухе и хорошего качества зерна.

Список литературы

4. Коробейников Н.И., Борадулина В.А. Селекционный прогресс по признакам продуктивности у сортов яровой мягкой пшеницы и стратегия отбора на урожайность // Адаптивный подход в земледелии, селекции и семеноводстве сельскохозяйственных культур в Сибири. – Новосибирск, 1996. – С. 48-49.

6. Коробейников Н.И. Влияние метеофакторов на признаки продуктивности и урожайность мягкой яровой пшеницы в условиях Приобья Алтайского края // Проблемы селекции и семеноводства полевых культур в Западной Сибири и Казахстане. – Барнаул, 2001. – 112 с.

Погодные условия и продуктивность подсолнечника

А.М. Мицурин, к. с.-х. н.

ГНУ Алтайский НИИСХ Россельхозакадемии

В Кулундинской степи Алтайского края подсолнечник занимает значительные площади посевов. Низкозатратная технология возделывания и высокая ликвидность маслосемян делают подсолнечник особо привлекательным в местных условиях.

Закономерности изменения урожайности маслосемян подсолнечника и степень их связи с климатическими условиями Кулундинской степи изучены недостаточно. Поэтому целью наших исследований являлось изучение реакции сортов и гибридов подсолнечника на агроклиматические условия зоны и определение влияние отдельных метеорологических факторов на формирование урожая подсолнечника.

Объектом исследований послужили сорта и гибриды подсолнечника разных групп спелости отечественной и зарубежной селекции. В раннеспелую группу вошли сорта Кулундинский 1, Скороспелый 87 и гибрид Донской 22 с продолжительностью периода вегетации 95–106 дней, а в среднераннюю группу спелости гибриды Альенор, Престиж и Партнер с периодом вегетации 110–114 дней. В качестве стандарта раннеспелой группы использовали ультраскороспелый сорт Кулундинский 1, а среднеранней – гибрид Альенор.

Полевые опыты были заложены в 2005–2009 гг. в стационаре лаборатории агротехники полевых культур Алтайского НИИСХ в условиях Кулундинской степи Алтайского края. Предшественник – чистый пар. Образцы высевались на делянках площадью 20 м². Густота стояния растений формировала из расчета 40 тыс. шт. растений на 1 га. Посев проводили вручную, уборку – путем срезания корзинок вручную с последующим обмолотом селекционным комбайном. Все учеты и наблюдения выполнены в соответствии с Методикой государственного испытания сельскохозяйственных культур [2]. Статистическую обработку проводили по Б.А. Доспехову [3].
Погодные условия в годы исследований различались как по температурному режиму, так и по распределению осадков, что является характерной особенностью Кулендинской зоны. Метеорологические условия, характеризующие годы исследований, обобщены на основании данных Государственной метеорологической станции с. Ключи Алтайского края, расположенной в 12 км от опытного поля (табл. 1).

Основным фактором, препятствующим получению устойчивых урожаев, является недостаток влаги. Среднегодовая норма осадков составляет 246 мм. Однако в отдельные годы отклонение сумм осадков от нормы бывает очень значительным и может изменяться от 120 до 370 мм. Максимум осадков приходится на летний период. С мая по август выпадает в среднем 138 мм [1]. При больших отклонениях годовой суммы осадков в сторону понижения наблюдается очень резкое падение урожаев[2].

Таблица 1

<table>
<thead>
<tr>
<th>Год</th>
<th>Май</th>
<th>Июнь</th>
<th>Июль</th>
<th>Август</th>
<th>Сентябрь</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Осадки, мм</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>11,6</td>
<td>66,1</td>
<td>58,6</td>
<td>56,9</td>
<td>17,0</td>
</tr>
<tr>
<td>2006</td>
<td>11,9</td>
<td>52,8</td>
<td>35,3</td>
<td>43,3</td>
<td>9,8</td>
</tr>
<tr>
<td>2007</td>
<td>19,6</td>
<td>51,0</td>
<td>86,1</td>
<td>36,0</td>
<td>13,3</td>
</tr>
<tr>
<td>2008</td>
<td>8,4</td>
<td>26,2</td>
<td>112,3</td>
<td>40,9</td>
<td>63,0</td>
</tr>
<tr>
<td>2009</td>
<td>14,0</td>
<td>45,0</td>
<td>121,0</td>
<td>40,0</td>
<td>48,0</td>
</tr>
<tr>
<td>среднемноголетние</td>
<td>25,2</td>
<td>28,1</td>
<td>50,6</td>
<td>33,9</td>
<td>20,0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Год</th>
<th>Температура °C</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>13,8</td>
<td>20,6</td>
<td>21,9</td>
<td>19,2</td>
<td>12,5</td>
</tr>
<tr>
<td>2006</td>
<td>12,7</td>
<td>22,4</td>
<td>20,7</td>
<td>17,0</td>
<td>13,2</td>
</tr>
<tr>
<td>2007</td>
<td>15,1</td>
<td>17,8</td>
<td>22,2</td>
<td>18,6</td>
<td>14,2</td>
</tr>
<tr>
<td>2008</td>
<td>15,5</td>
<td>20,4</td>
<td>23,0</td>
<td>18,0</td>
<td>9,8</td>
</tr>
<tr>
<td>2009</td>
<td>14,8</td>
<td>16,9</td>
<td>19,4</td>
<td>17,9</td>
<td>10,3</td>
</tr>
<tr>
<td>среднемноголетние</td>
<td>13,6</td>
<td>19,0</td>
<td>21,6</td>
<td>18,5</td>
<td>11,8</td>
</tr>
</tbody>
</table>

По среднемноголетним данным за май — июнь выпадает 24,2 % осадков от годовой нормы, за июль — август — 32,0 %, зимних осадков (снега) выпадает 20,0 % (60 мм).

Первая половина вегетации (май — 1 декада июля) до цветения подсолнечника, как правило, характеризуется повышенным фоном температуры воздуха с минимальным количеством осадков.

Из всех лет исследований наиболее благоприятные погодные условия по увлажнению складывались в 2007 г., когда количество осадков в первую половину вегетации подсолнечника значительно превысило норму, составив 129,1 мм, с умеренными осадками во второй половине вегетации.

Наибольшая средняя урожайность в опыте 2,89 т/га получена у гибрида Партнер, а наименьшая — 2,22 т/га у сорта Кулендинский 1. Достовер-
ное превышение урожайности по отношению к стандарту Кулундинский 1 имели гибриды Донской 22, Альенор, Престиж и Партнер. По отношению к гибриду Альенор достоверной прибавки не получено ни у одного из изучаемых образцов (табл. 2). Средний коэффициент вариации (CV) в опыте составил 17,3 %. При этом максимальное значение было у гибрида Донской 22 и сорта Кулундинский 1 28,3 и 20,7 % соответственно, а минимальное – 10,0 % у гибрида Престиж.

Таблица 2

<table>
<thead>
<tr>
<th>Сорт, гибрид</th>
<th>(\bar{X}, \text{ т/га})</th>
<th>min - max, т/га</th>
<th>CV, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кулундинский 1 st</td>
<td>2,22</td>
<td>1,54 – 2,86</td>
<td>20,7</td>
</tr>
<tr>
<td>Скороспелый 87</td>
<td>2,31</td>
<td>1,73 – 2,65</td>
<td>13,4</td>
</tr>
<tr>
<td>Донской 22</td>
<td>2,79</td>
<td>1,37 – 3,57</td>
<td>28,3</td>
</tr>
<tr>
<td>Альенор st</td>
<td>2,84</td>
<td>2,11 – 3,53</td>
<td>17,9</td>
</tr>
<tr>
<td>Престиж</td>
<td>2,60</td>
<td>2,38 – 3,10</td>
<td>10,0</td>
</tr>
<tr>
<td>Партнер</td>
<td>2,89</td>
<td>2,30 – 3,36</td>
<td>13,8</td>
</tr>
<tr>
<td>Среднее</td>
<td>2,60</td>
<td>1,90 – 3,17</td>
<td>17,3</td>
</tr>
<tr>
<td>НСР_{05}</td>
<td>0,17</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Адаптивность генотипов к жестким и благоприятным условиям характеризуется размахом варьирования урожайности. Высокое значение нижнего порога урожайности отмечено у гибридов Партнер и Престиж среднеранней группы спелости, 2,30 и 2,38 т/га соответственно. Также гибрид Партнер имел высокий максимальный показатель урожайности в опыте 3,36 т/га, что характеризует его как хорошо отзывчивый на улучшение условий выращивания. Самую низкую 1,37 т/га, но в тоже время и самую высокую 3,57 т/га урожайность имел гибрид Донской 22, что характеризует его как высоко отзывчивого, но недостаточно устойчивого к аббиотическим стрессорам.

Анализ корреляционной зависимости урожайности подсолнечника от погодных условий показал, что изучаемые сорта и гибриды по-разному реагировали на осадки и температуру вегетационного периода.

Связь между урожайностью и количеством осадков за май и июнь у сорта Скороспелый 87, а также гибридов Донской 22 и Партнер недостоверна или слабо выражена. Наиболее высокой связью (\(r = 0,73 \)) между майскими осадками и урожайностью характеризуется гибрид Престиж. У гибрида Альенор отмечена средняя степень зависимости от количества осадков в мае (\(r = 0,58 \)), а сорта Кулундинский 1 от осадков в июне (\(r = 0,53 \)) (табл. 3).

Отмечена высокая обратная зависимость между температурой в мае и урожайностью (\(r = -0,80 \)) у сорта Кулундинский 1 и высокая прямая зави-
сходимость между данными показателями в июне (r = 0,70 – 0,89) у всех сортов и гибрида раннеспелой группы. Для гибридов среднеранней группы спелости эта связь была недостоверна.

Таблица 3

<table>
<thead>
<tr>
<th>Год</th>
<th>Май</th>
<th>Июнь</th>
<th>Июль</th>
<th>Август</th>
<th>Сентябрь</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кулундинский 1</td>
<td>-0,17</td>
<td>+0,53</td>
<td>-0,96</td>
<td>+0,50</td>
<td>-0,72</td>
</tr>
<tr>
<td>Скороспелый 87</td>
<td>+0,02</td>
<td>+0,17</td>
<td>-0,74</td>
<td>+0,06</td>
<td>-0,59</td>
</tr>
<tr>
<td>Донской 22</td>
<td>-0,48</td>
<td>-0,07</td>
<td>-0,59</td>
<td>+0,26</td>
<td>-0,20</td>
</tr>
<tr>
<td>Альенор</td>
<td>+0,58</td>
<td>+0,35</td>
<td>-0,33</td>
<td>-0,02</td>
<td>-0,57</td>
</tr>
<tr>
<td>Престиж</td>
<td>+0,73</td>
<td>-0,04</td>
<td>-0,03</td>
<td>-0,59</td>
<td>-0,36</td>
</tr>
<tr>
<td>Партнер</td>
<td>+0,14</td>
<td>-0,40</td>
<td>-0,06</td>
<td>-0,45</td>
<td>-0,03</td>
</tr>
</tbody>
</table>

Между осадками июля и урожайностью прослеживается четкая обратная зависимость (r = от -0,03 до -0,96), а температурой — прямая зависимость (r = 0,23 – 0,78) разной степени выраженности у всех сортов и гибрид. Это связано с тем, что в этот период у подсолнечника проходит фаза цветения, и осадки в этот период создают неблагоприятные условия для опыления, особенно у скороспелых сортов и гибрид. Однако и чрезмерно высокая температура воздуха в этот период, хотя и в меньшей степени, но также оказывает отрицательное влияние на урожайность культуры. Осадки августа в слабой и средней степени оказали положительное влияние на продуктивность раннеспелых сортов и гибрид и в такой же мере отрицательное на гибриды среднеранней группы спелости.

Между температурой воздуха в сентябре и урожайностью прослеживается положительная зависимость (r = 0,21 – 0,78) у всех изучаемых сортов и гибрид. Осадки оказали отрицательное влияние на урожайность, особенно у сортов Кулундинский 1 и Скороспелый 87, где коэффициент корреляции составил -0,72 и -0,59 соответственно.

Выводы

Таким образом, значительную роль в формировании урожая подсолнечника играют погодные условия первой половины вегетации. Осадки в мае оказывают положительное влияние на урожайность сортов и гибридов.
подсолнечника среднеранней группы спелости, а температурный режим июня достоверно коррелирует с урожайностью сортов и гибридов раннеспелой группы. Существует четкая положительная связь между урожайностью подсолнечника с температурным режимом в июле и сентябре, что совпадает с фазами цветения и созревания.

Список литературы

УДК 635.9: 631.52: 631.53

Сортоизучение и микроразмножение in vitro хризантемы садовой в Сибири

Г.Э. Пищева, Л.А. Клементьева, к. с.-х. н.

ГНУ НИИСС Россельхозакадемии

Исследование по сортоизучению и размножению хризантемы садовой на юге Западной Сибири является новым и актуальным, позволяет определить возможность введения хризантемы в ассортимент цветочно-декоративных растений как осеннекветущую культуру и рекомендовать перспективные сорта в озеленение. Методы клонального микроразмножения помогают решить не только проблему массового размножения хризантемы, но и выявить как общие, так и частные закономерности роста и развития в условиях in vitro.

В ГНУ НИИСС Россельхозакадемии коллекция хризантемы представлена 10 сортами. В 2006-2008 гг. изучали дальневосточные сорта Волшебница, Дальневосточница, Золотой Рой, Царица Тамара, в 2010-2012 гг. после омоложения растений делением — сорт Дальневосточница, а также сорта Хамелеон, Okishor, Опал, Lipstik, Рыжик, Юность, полученные от любителей. Отмечали даты отрастания, бутонизации, начала и конца цветения; в период массового цветения — высоту, диаметр куста, соцветия, число вегетативных и генеративных побегов.

Объектами исследований по размножению хризантемы через культуру ткани были сорта Okishor и Опал. В качестве экскплантов использовали черенки и фрагменты соцветия в фазе бутонизации (чашелистики, цветоношка, цветоложе, цветки с частью цветоложа). Методики общепринятые 106
Питательные среды готовили по прописи Мурасиге и Скуга (MS) с добавлением 30 г/л сахарозы. Из регуляторов роста на этапе введения в культуру использовали α-нафтилуксусную кислоту (НУК) 1,0 мкМ, индолил-3-масляную кислоту (ИМК) 0,1 мкМ, 6-бензиламинопурин (БАП) 0,25, 10, 15, 20 мкМ, тидиазурон (TDZ) 10, 15 мкМ, кинетин (Кн) 0,5 мкМ и гибберелову кислоту (ГК) 0,05 мкМ. Микрочеренки нарезали длиной 10-15 мм, соцветие — на 4 части. Побеги и бутоны стерилизовали в 0,1% растворе сулемы 10 мин. (одноступенчатая стерилизация) и в сочетании с сульфохлорорганином 3 и 10 мин. соответственно (двухступенчатая). Адаптировали растения к условиям in vivo в лаборатории при освещенности 3 кЛк и фотопериоде 16/8 ч.

Лимитирующим фактором при интродукции растений в Сибири является их зимостойкость. Так, не все дальневосточные сорта хризантемы, обладающими декоративными качествами, оказались устойчивыми к экстремальным условиям сибирских зим. Сорта Волшебница, Золотой Рой, Царица Тамара погибли в суровую зиму 2009/2010 года (абсолютный минимум температуры воздуха -34,0-39,5°С был на протяжении семи декад).

В 2010-2012 гг. отрастание растений наблюдали 12 апреля. Значительно варьировали даты начала бутонизации и цветения. Разница начала бутонизации между сортами составила 51 день: с 7 июля (Опал) по 27 августа (Юность), цветения — 47 дней: с 13 августа (Рыжик) по 29 сентября (Дальневосточница) (табл. 1).

Обильным цветением характеризовались все сорта, кроме сорта Юность. Наиболее продуктивным все годы был сорт Хамелеон, удовлетворительно все годы цвели Опал, Okishor, Lipstik.

Продолжительность цветения хризантемы зависела от количества цветков в кусте, а у среднепоздних и поздних сортов цветение прекращалось при устойчивом похолодании ниже -10°С. Длительность цветения составила от 5 дней у сорта Юность (2-3 цветоносов и 3-5 цветков в кусте, зацвел за 5 дней до заморозков) до 46±10 дней у сорта Хамелеон (7-18 цветоносов, до 79 цветков в кусте, процветал до наступления заморозков).

Окраска соцветий сортов хризантемы в коллекции желто-оранжевая (Опал), кирпично-желтая (Рыжик), кирпично-розовая (Хамелеон), темнокрасная (Lipstik), сиреневая со светлым окаймлением (Дальневосточница)
и розово-сиреневая (Okishor, Юность). Форма соцветий полумахровая (Хамелеон) и махровая. У сортов Рыжик, Lipstik соцветия в кусте махровые и полумахровые. По диаметру соцветий все сорта мелкоцветковые: 4,0-4,5 см (Рыжик, Дальневосточница, Юность), 5,0-6,5 см (Lipstik, Okishor, Опал) и 6,5-7,0 см (Хамелеон).

Таблица 1
Характеристика сортов хризантемы садовой в условиях юга Западной Сибири, 2010-2012 гг.

<table>
<thead>
<tr>
<th>Сорт</th>
<th>Средняя дата отрастания</th>
<th>Число дней цветения</th>
<th>Высота, см</th>
<th>Число побегов</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дальневосточница</td>
<td>12.04</td>
<td>20.08±3</td>
<td>29.09±7</td>
<td>13±3</td>
</tr>
<tr>
<td>Lipstik</td>
<td>12.04</td>
<td>14.09±5</td>
<td>30±2</td>
<td>65±5</td>
</tr>
<tr>
<td>Рыжик</td>
<td>12.04</td>
<td>13.08±4</td>
<td>35±3</td>
<td>39±4</td>
</tr>
<tr>
<td>Okishor</td>
<td>12.04</td>
<td>8.09±2</td>
<td>28±5</td>
<td>50±0</td>
</tr>
<tr>
<td>Опал</td>
<td>12.04</td>
<td>10.07±4</td>
<td>40±5</td>
<td>65±5</td>
</tr>
<tr>
<td>Хамелеон</td>
<td>12.04</td>
<td>20.08±10</td>
<td>46±10</td>
<td>65±8</td>
</tr>
<tr>
<td>Юность</td>
<td>12.04</td>
<td>27.08*</td>
<td>12.10</td>
<td>22±3</td>
</tr>
<tr>
<td>Лимит:</td>
<td>12.04</td>
<td>7.07-27.08</td>
<td>13.08-12.10</td>
<td>5-46</td>
</tr>
</tbody>
</table>

*Примечание – сорт Юность цвел только в 2012 г.

По высоте куста к низким бордюрным (до 30 см) относится сорт Юность, к среднерослым (30-50 см) – сорта Рыжик, Okishor, к высоким (50-100 см) – Lipstik, Опал, Хамелеон и Дальневосточница.

Для сохранения хризантемы в условиях Сибири в открытом грунте требуется зимнее укрытие опавшими листьями, лапником и регулярное омолаживание. Через 2-3 года растения черенкуем, возобновляем делением куста, иначе они становятся уязвимы в зимний период и гибнут. Для сохранения коллекции перспективно микроклональное размножение хризантемы, позволяющее экономить полевые площади, планировать выход продукции к определенному сроку. Этот метод успешно используют в ряде российских ботанических садов [5].

На этапе введения в культуру in vitro одноступенчатая стерилизация побегов и бутонов позволила получить 14,3% (сорт Okishor) и 28,6% (сорт Опал) стерильных эксплантов. В варианте с сортом Okishor наблюдалась высокая инфицированность материала и после длительной выдержки в растворе сулемы экспланты оказались не жизнеспособными. Двухступенчатая стерилизация позволила получить до 40,9 % (Опал), 65,7 % (Okishor) стерильных и 22,7 % (Опал), 65,7 % (Okishor) жизнеспособных эксплантов. В обоих вариантах опыта гибель инфицированных эксплантов наступала в течение 3-7 дней.

Изучая регенерационную способность у различных типов эксплантов хризантемы, отметили следующие особенности развития. Прямую регене-
рацию (1-4 побега) наблюдали на экскапантах черенков и трубчатых цветков с частью цветоложа, через каллус — на цветоложе. В других вариантах опыта регенерации побегов не было. Максимальное число побегов за один пассаж получено при использовании трубчатых цветков. К 20 дню культивирования микропобеги имели длину 10-15 мм. В дальнейшем регенеранты лучше развивались на питательной среде MS, обогащенной TDZ 15 мкМ. Из одного соцветия можно получить 40 и более побегов морфологически идентичных материнским растениям.

На этапе собственно микроразмножения из двух вариантов питательных сред и двух вариантов культивирования (табл. 2) не зависимо от сорта лучше были MS + 0,5 мкМ Кн + 0,25 мкМ ИМК + 20 мкМ ГК и чередование MS + 0,25 мкМ 6-БАП + 0,25 мкМ ИМК + 20 мкМ ГК с безгормональной MS. В этих вариантах образовались морфологически правильно сформированные микропобеги высотой до 23-25 мм, коэффициент размножения 1,7-2,7. В остальных вариантах наблюдали витрификацию побегов, замедление роста, некроз тканей.

Таблица 2

<table>
<thead>
<tr>
<th>Вариант питательной среды</th>
<th>Коэффициент размножения</th>
<th>Средняя высота растения, мм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Онал</td>
<td>Okishor</td>
</tr>
<tr>
<td>MS + 0,5 мкМ Кн + 0,25 мкМ ИМК + ГК</td>
<td>1,7</td>
<td>2,4</td>
</tr>
<tr>
<td>MS + 0,5 мкМ Кн + 0,25 мкМ ИМК + ГК чередование с безгормональной</td>
<td>1,9</td>
<td>1,9</td>
</tr>
<tr>
<td>MS + 0,25 мкМ 6-БАП + 0,25 мкМ ИМК + ГК</td>
<td>1,8</td>
<td>2,5</td>
</tr>
<tr>
<td>MS + 0,25 мкМ 6-БАП + 0,25 мкМ ИМК + ГК чередование с безгормональной</td>
<td>2,7</td>
<td>2,6</td>
</tr>
</tbody>
</table>

На этапе укоренения оптимальные результаты получены на безгормональной питательной среде MS, в сравнении со средой ½ MS + 3мкМ НУК. Микропобеги опережали в росте на 36,58 мм, лучше укоренялись, корни развивались длиннее на 16,72 мм и больше на 3,3 шт.

Для адаптации к нестерильным условиям растения высаживали в пластмассовые стаканы объемом 200 мл, заполненные стерильной дерновой почвой. Для создания условий повышенной влажности растения в течение 7 дней накрывали сверху стаканчиками, ежедневно поливали и опрыскивали. Число адаптированных растений к нестерильным условиям составило 100 %.

Через 3 месяца адаптации растения имели побег высотой 20-30 см и хорошо развитую корневую систему, формировали бутоны и зацветали, отдельные образовали поросль.
В открытый грунт растения высадили в мае, после 30-60 дней роста в лаборатории. В течение месяца растения приживались, происходила смена листьев (на солнце листья обгорают, пробуждаются спящие почки и появляются новые листья). Все растения образовали бутонь в год посадки, но из-за жары в 2012 году межфазный период «бутонизация-зацветание» длился до заморозков, поэтому зацвели единичные в отличие от растений традиционно размноженных. Перезимовали растения под укрытием из листьев на 100 %, весной 2013 г. образовали по 7-10 побегов/куст.

Таким образом, из 10 изученных сортов зимостойкость при регулярном омоложении растений проявили 7. В городское озеленение рекомендован высокий полумахровый кирпично-розовой сорт Хамелеон, для любительского садоводства — махровый среднерослый розово-сиреневый сорт Okishor и высокие желто-оранжевые махровый Опал, красный полу­махровый Lipstik. Сорта позднего срока цветения не перспективны для озеленения.

Результаты проведенных исследований по микроклональному размножению хризантемы садовой позволили рекомендовать в качестве эксплантов фрагмент соцветия с трубчатыми цветками; на этапе собственно микроразмножения — питательную среду MS с добавлением 0,5 мкМ Кн+0,25 мкМ ИМК+20 мкМ ГК, либо чередование MS+0,25 мкМ 6-БАП+0,25 мкМ ИМК+20 мкМ ГК с безгормональной средой MS; на этапе укоренения — безгормональную питательную среду MS. Сортоспецифичность при микроразмножении in vitro хризантемы не выявлена.

Список литературы

2. Калинин Ф.А. Методы культуры тканей в физиологии и биохимии растений. – Киев, 1980.– 488 с.
Публикационная активность молодых ученых при проведении научных исследований

В.Е. Суховеркова, к.б.н.
зав. отделом научно-технической информации и патентных исследований
ГНУ Алтайский НИИСХ Россельхозакадемии

В последние годы научно-исследовательские учреждения (НИУ) Россельхозакадемии должны представлять индекс цитирования (ИЦ) публикаций своих сотрудников. ИЦ можно рассчитать, используя РИНЦ. РИНЦ - это национальная информационно-аналитическая система, в которой собраны более 2 млн. публикаций российских авторов, а также информация о цитировании этих публикаций из более чем 3 тыс. российских журналов в Научной электронной библиотеке eLIBRARY.ru (1).

Уважаемые молодые исследователи, необходимо чтобы каждая научная работа завершалась публикацией в международных, зарубежных национальных или российских журналах, индексируемых в Международных базах Web of Science и Scopus или РИНЦ (национальной базе «Российский индекс научного цитирования»).

Базы данных научного цитирования, в первую очередь международные - Web of Science, Scopus, а так же РИНЦ применяются для оценки научных организаций, научных сотрудников и научных журналов.

Индекс цитирования НИУ складывается из общего количества цитирований статей сотрудников учреждения, поделенных на общее количество сотрудников (в течение 1 года или 5-летки и др.). Так, за 2012 г. такой индекс в Алтайском НИИСХ составил 0,7. Институт заинтересован в повышении индекса публикаций своих сотрудников.

Индекс цитирования работ ученых — показатель авторитетности и популярности автора, измеряющийся частотой цитирования его трудов. Индекс цитирования для автора — это сколько раз все статьи автора упоминались другими авторами.

Согласно Приказа Минобрнауки РФ от 14.10.2009 при анализе публикационной активности цитируемость учитывается за пять лет, предыдущих текущему году (2).

Научная электронная библиотека eLIBRARY.ru, крупнейший российский информационный портал в области науки, технологии, меди-
цины и образования, содержащий рефераты и полные тексты более 15 млн. научных статей и публикаций (1).

Основные задачи проекта РИНЦ: создание многоцелевой поисковой системы по публикациям российских ученых; создание и формирование Единого реестра публикаций российских ученых; создание эффективной системы навигации в массиве научной информации и обеспечение доступа пользователей к полным текстам публикаций.

Качество журналов высокое, только ВАКовских более 2 тыс.шт.

Согласно решению Президиума Высшей аттестационной комиссии (ВАК) от 14.10.2008 г. необходимыми условиями для включения научных периодических изданий в Перечень ВАК являются наличие полнотекстовой сетевой версии в Интернете и включение в систему Российского индекса научного цитирования (3).

Научная электронная библиотека - eLIBRARY.ru, создана в 1998 году при финансовой поддержке РФФИ и в настоящий момент является крупнейшей научной библиотекой на территории Российской Федерации:
- Число наименований журналов -36,6 тыс.
- Из них российских журналов -7,8 тыс.
- Число журналов с полными текстами – 7,2 тыс.
- Из них российских журналов - 2,8 тыс.
- Из них в открытом доступе – 2,2 тыс.
- Общее число статей – 16,8 млн. (1)

Как работает РИНЦ:
1. По результатам научных исследований учёный публикует статью в реферируемом научном журнале.
2. Информация из научных журналов оцифровывается в единую базу данных.
3. Для каждой статьи подсчитывается количество ссылок на неё в других статьях.

Поиск в РИНЦ осуществляется: по предметной области, по автору, по названию журнала, по институту и т.д.

РИНЦ начал систематически обрабатывать российские журналы только с 2006 года и выпуски журналов за предыдущие годы пока представлены слабо.

Задача для автора определить сколько раз все его статьи упоминались другими авторами.

Индекс цитирования (ИЦ) определяется по количеству источников, процитировавших публикации искомого автора. При этом одна и та же работа может быть процитирована несколько раз в разных источниках.

Количество статей молодых ученых Алтайского НИИСХ представлены в табл.1. Следует помнить, что в базу электронной библиотеки пока включаются все ВАКовские журналы; статьи из журналов, внесенных в РИНЦ (список смотри eLIBRARY.ru). Это не значит, что направлять статьи
в разные сборники НИР, не надо. Это значит, что статьи должны быть хорошо доработаны и в последующем отправлены в журналы, имеющие высокий импакт-фактор (список смотри там же: eLIBRARY.ru).

Таблица 1

Рейтинг молодых ученых института по числу публикаций за последние 5 лет (за 2008-2012 гг)

<table>
<thead>
<tr>
<th>№ места</th>
<th>Ф.И.О.</th>
<th>Должность, уч. степень</th>
<th>Подразделение</th>
<th>Количество публикаций, шт</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>всего</td>
</tr>
<tr>
<td>1</td>
<td>Садовников Г.Г</td>
<td>Зав. лаб., к.с.-х. н.</td>
<td>Лаб. защиты растений</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Шукис С.К.</td>
<td>н.с., к.с.-х.н.</td>
<td>Лаб. селекции зерно-бобовых и кормовых культур</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>Валежанин В.С.</td>
<td>н.с., к.с.-х.н.</td>
<td>Лаб. селекции мягкой пшеницы</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Зиборов А.И.</td>
<td>н.с.</td>
<td>Лаб. селекции твердой пшеницы</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Усенко С.В.</td>
<td>Зав. лаб., к.с.-х.н.</td>
<td>Лаб. технологической политики и агroteхнологий</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Кравченко В. И.</td>
<td>с.н.с., к.с.-х.н.</td>
<td>Кулундинская СХОС</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>Дерянова Е.Г.</td>
<td>с.н.с., к.с.-х.н.</td>
<td>Отдел НТИ и патентных исследований</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Шукис В.Н.</td>
<td>м.н.с.</td>
<td>Лаб. агрохимии и экологии</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Пирогов О.А.</td>
<td>н.с.</td>
<td>Лаб. селекции зерно-бобовых и кормовых культур</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>Кузикеев Ж.В.</td>
<td>н.с.</td>
<td>Лаб. селекции зернофуражных культур</td>
<td>7</td>
</tr>
<tr>
<td>11</td>
<td>Салов Д.Г.</td>
<td>м.н.с.</td>
<td>Лаб. защиты растений</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>Садовникова Н.Н.</td>
<td>м.н.с.</td>
<td>Лаб. защиты растений</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>Щербакова А.А.</td>
<td>н.с.</td>
<td>Лаб. технологической политики и агroteхнологий</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>Дейнес Н.В.</td>
<td>н.с.</td>
<td>Лаб. селекции зернофуражных культур</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Лепехов С. Б.</td>
<td>н.с.</td>
<td>Лаб. селекции мягкой пшеницы</td>
<td>4</td>
</tr>
<tr>
<td>№ места</td>
<td>Должность, ученая степень</td>
<td>ФИО</td>
<td>Количество публикаций, шт</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>-----</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>всего</td>
<td>в т.ч. личное авторство</td>
</tr>
<tr>
<td>1</td>
<td>Заведующий, д.с.-х.н.</td>
<td>Шукис Е.Р.</td>
<td>44</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>Вед. научный сотрудник, д.с.-х.н.</td>
<td>Стецов Г.Я.</td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Директор, к.с.-х.н.</td>
<td>Гаркуша А.А.</td>
<td>29</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Зам. директора по науч. работе, д.с.-х.н.</td>
<td>Олешко В.П.</td>
<td>29</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Заведующий, к.с.-х.н.</td>
<td>Розова М.А.</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Заведующий, к.с.-х.н.</td>
<td>Садовников Г.Г.</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Заведующий, к.с.-х.н.</td>
<td>Литвинцев П.А.</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Заведующая, к.с.-х.н.</td>
<td>Борадулина В.А.</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Заведующий, к.с.-х.н.</td>
<td>Лихачев Н.И.</td>
<td>21</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>Заведующая, к.б.н.</td>
<td>Суховерцова В.Е.</td>
<td>20</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>Заведующий, к.б.н.</td>
<td>Коробейников Н.И.</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>Ведущий научный сотрудник, к.с.-х.н.</td>
<td>Мусалимов Г.М.</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>№</td>
<td>Должность</td>
<td>Фамилия</td>
<td>№</td>
<td>Должность</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>---------------</td>
<td>-----</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>13</td>
<td>Старший научный сотрудник, к.с.-х.н.</td>
<td>Мицурин А.М.</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Уч. секретарь, к.с.-х.н.</td>
<td>Никитина Е.Д.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Научный сотрудник</td>
<td>Шукис С.К.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Научный сотрудник</td>
<td>Валекжаин В.С.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Научный сотрудник</td>
<td>Зиборов А.И.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Заведующий, к.с.-х.н.</td>
<td>Усенко С.В.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Старший научный сотрудник, к.с.-х.н.</td>
<td>Литвинцева Т.А.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Старший научный сотрудник, к.с.-х.н.</td>
<td>Кравченко В.И.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Старший научный сотрудник, к.с.-х.н.</td>
<td>Пургин Д.В.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Старший научный сотрудник, к.с.-х.н.</td>
<td>Дерянова Е.Г.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Младший научный сотрудник</td>
<td>Шукис В.П.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Научный сотрудник</td>
<td>Пирогов О.А.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Научный сотрудник</td>
<td>Кузикеев Ж.В.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Заведующий, к.с.-х.н.</td>
<td>Назаренко П.Н.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Младший научный сотрудник</td>
<td>Солов Д.Г.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Младший научный сотрудник</td>
<td>Садовникова Н.Н.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Научный сотрудник</td>
<td>Щербакова А.А.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Заведующий</td>
<td>Кириллов С.С.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Научный сотрудник</td>
<td>Дейнесс Н.В.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Научный сотрудник</td>
<td>Лепехов С.Б.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Старший научный сотрудник</td>
<td>Лащенко В.М.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Младший научный сотрудник</td>
<td>Кузикеева А.П.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Ведущий научный сотрудник, к.с.-х.н., 0.3</td>
<td>Вольнов В.В.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Вед. спец. по информационно-аналит. учету</td>
<td>Мухин В.Н.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Научный сотрудник</td>
<td>Егиазарян Е.Е.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Научный сотрудник</td>
<td>Пешков Н.В.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Старший научный сотрудник</td>
<td>Апарин В.А.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Младший научный сотрудник</td>
<td>Кривошеев А.Н.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Младший научный сотрудник</td>
<td>Куркин А.В.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>№</td>
<td>Должность и ФИО</td>
<td>Фамилия, И.О.</td>
<td>Род деятельности</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Младший научный сотрудник</td>
<td>Кобзева И.А. (д/о)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Младший научный сотрудник</td>
<td>Молодых Л.С.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Младший научный сотрудник</td>
<td>Бочарова Л.С.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Старший научный сотрудник</td>
<td>Буянова В.Н.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Научный сотрудник</td>
<td>Попилищук А.С.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Заведующая</td>
<td>Голованова И.В.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Младший научный сотрудник</td>
<td>Часовских Д.В.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Аспирант</td>
<td>Порунов П.И.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Младший научный сотрудник</td>
<td>Меркулов В.И.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Младший научный сотрудник</td>
<td>Резник И.В. (д/о.)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Младший научный сотрудник</td>
<td>Березникова Н.А. (д/о)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Для определения в РИНЦ сколько раз ваши статьи упоминались другими авторами необходимо следующее:

Порядок выполнения:
- Зайти на сайт «Научной электронной библиотеки» eLIBRARY.ru
- Выбрать раздел «Российский индекс научного цитирования».
- Выбрать пункт «Поиск авторов».
- Набрать фамилию и инициалы ученого. Регистр значения не имеет.
- Инициалы – один или оба – вводят через пробел, точку после них ставить не обязательно, например: садовников г.г
- При необходимости, уточнить поиск, указав тематику, название организации, города, региона, страны.
- Нажать кнопку ПОИСК.
- Используя параметр ГОД ЦИТИРУЮЩЕЙ ПУБЛИКАЦИИ, осуществить поиск цитирований искомого автора за каждый год (из пяти необходимых).
- Подсчитать количество ссылок за каждый год и итоговое число.
- При необходимости, оформить список или таблицу.
Пример 1: Стецов Г.Я., д.с.-х.наук, Алтайский НИИСХ (4).

Таблица 3

по базе РИНЦ (по состоянию на 01.06.2013 г.)

<table>
<thead>
<tr>
<th>Год</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Индекс цитируемости</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество</td>
<td>28</td>
<td>20</td>
<td>23</td>
<td>38</td>
<td>23</td>
<td>132</td>
</tr>
</tbody>
</table>

Среди молодых ученых цитируемость работ пока слабая, она зависит от тематики, от важности журнала и др.

Пример 2: Пирогов О.А., научный сотрудник - по рейтингу публикаций среди молодых ученых он на 9 месте, а по цитируемости- впереди.

Таблица 4

по базе РИНЦ (по состоянию на 01.06.2013 г.)

<table>
<thead>
<tr>
<th>Год</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>Индекс цитируемости</th>
</tr>
</thead>
<tbody>
<tr>
<td>Количество</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

SCIENCE INDEX — это аналитическая надстройка над РИНЦ, позволяющая проводить более детальные аналитические исследования и рассчитывать более сложные наукометрические показатели. Для этого нужно зарегистрироваться в качестве автора в системе SCIENCE INDEX (1). При этом Вы будете добавлены в список авторов, в РИНЦ будут сформированы списки Ваших публикаций и цитирований, а также рассчитаны различные показатели Вашей публикационной активности.

Вот как описывается на сайте работа со списком публикаций автора: «После регистрации автора в системе SCIENCE INDEX и присвоения ему персонального идентификационного кода автора (SPIN-кода) в разделе ДЛЯ АВТОРОВ (ссылка в верхней навигационной линейке портала eLIBRARY.RU) появляется ссылка на Персональный профиль автора, где собраны все инструменты и сервисы, предназначенные для авторов научных публикаций. Чтобы просмотреть список своих публикаций, можно перейти по ссылке Мои публикации в этом разделе. На список своих публикаций Вы можете также попасть через Авторский указатель или просто щелкнув на фамилии автора на любой странице РИНЦ, где эта фамилия выделена как ссылка. Список публикаций каждого автора находится в открытом доступе для всех пользователей РИНЦ, однако у зарегистрированного автора на странице со списком своих публикаций появля-
ются возможности по уточнению этого списка, недоступные для остальных пользователей»(1).

К сожалению, многие авторы не находят свои публикации в РИНЦ. Это связано с тем, что финансирование проекта РИНЦ не позволяет проводить весь цикл в ручном режиме, обработка поступающей информации ведется пока в автоматическом режиме. Поэтому регистрация в SCIENCE INDEX дает возможность найти в РИНЦ и добавить свои публикации в свой список, а также добавить найденные в РИНЦ ссылки в список своих цитирований и массу других интересных возможностей.

Таблица 5

<table>
<thead>
<tr>
<th>Дисциплина</th>
<th>Количество статей (из 511)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Физика</td>
<td>281</td>
</tr>
<tr>
<td>Биология и биохимия</td>
<td>21</td>
</tr>
<tr>
<td>Науки о растениях и животных</td>
<td>6</td>
</tr>
<tr>
<td>Сельское хозяйство</td>
<td>2</td>
</tr>
<tr>
<td>Экономика и бизнес</td>
<td>0</td>
</tr>
</tbody>
</table>

Улучшение международного сотрудничества может привести к повышению этого показателя. Не упускайте возможность отправить интересный материал в зарубежный журнал - «не боги горшки обжигают». Перечень этих журналов вы также найдете в РИНЦ.

В последнее время все больше оценивают уровень российских журналов, качество статей, опубликованных в них. Цитируемость статьи зависит от популярности журнала. Читать и цитировать журнал могут чаще или реже – от этого зависит его импакт-фактор.

Импакт-фактор (ИФ)- численный показатель важности научного журнала. За рубежом он ежегодно рассчитывается с 1960-х годов. Расчет импакт-фактора основан на трёхлетнем периоде, например: число цитирований в течение 2011 года в журналах, отслеживаемых Институтом научной информации, статей, опубликованных в данном журнале в 2009—2010 годах, поделенное на число статей, опубликованных в данном журнале в 2009-2010 годах. Вот некоторые данные по журналам, выбранные нами в РИНЦ (табл.6).
Таблица 6

Импакт-фактор журналов по РИНЦ (на январь 2013 г.)

<table>
<thead>
<tr>
<th>Наименование журнала</th>
<th>ИФ РИНЦ</th>
<th>Наименование журнала</th>
<th>ИФ РИНЦ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Почвоведение</td>
<td>0,421</td>
<td>Доклады РАСХН</td>
<td>0,124</td>
</tr>
<tr>
<td>Агрохимия</td>
<td>0,257</td>
<td>Защита и карантин растений</td>
<td>0,115</td>
</tr>
<tr>
<td>Земледелие</td>
<td>0,199</td>
<td>Вестник АГАУ</td>
<td>0,055</td>
</tr>
<tr>
<td>Сиб. вестник с.-х. науки</td>
<td>0,153</td>
<td>Вестник НГАУ</td>
<td>0,008</td>
</tr>
</tbody>
</table>

Таким образом, База данных РИНЦ позволяет осуществлять оценку результативности и эффективности деятельности научно-исследовательских организаций, ученых, уровень научных журналов.

Цитирование является индикатором полезности и авторитетности статьи и её влияния на научное сообщество; оно является показателем, по которому можно сравнивать результаты исследования учёных.

Задача для каждого автора определить сколько раз все его статьи упоминались другими авторами.

Индекс цитирования изначально применялся для получения научной информации. К возможности использования этих данных для оценки результатов исследований привело развитие электронных средств связи и хранения информации.

Список литературы

1. www.eLibrary.ru
4. www.altniish.ru
5. Писляков В. Классные работы (Поднять цитируемость отечественных публикаций поможет участие российских ученых в международных проектах).- Поиск - М., 2011, №49 от 9 декабря